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ABSTRACT

Nonlinear guiding center (NLGC) theory has been used to explain the asymptotic perpendicular diffusion coefficient
k1 of energetic charged particles in a turbulent magnetic field, which can be applied to better understand cosmic
ray transport. Here we re-derive NLGC, replacing the assumption of diffusive decorrelation with random ballistic
decorrelation (RBD), which yields an explicit formula for «; . We note that scattering processes can cause a reversal
of the guiding center motion along the field line, i.e., “backtracking,” leading to partial cancellation of contributions
to k1, especially for low-wavenumber components of the magnetic turbulence. We therefore include a heuristic
backtracking correction (BC) that can be used in combination with RBD. In comparison with computer simulation
results for various cases, NLGC with RBD and BC provides a substantially improved characterization of the
perpendicular diffusion coefficient for a fluctuation amplitude less than or equal to the large-scale magnetic field.
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1. INTRODUCTION

While charged particles subject to a magnetic field in a ten-
uous plasma will mainly gyrate along that field, magnetic tur-
bulence can cause particles to also spread in the directions per-
pendicular to the large-scale field. Such perpendicular transport
involves an interesting interplay between the transport along
field lines, the random walk of magnetic field lines perpendicu-
lar to the large-scale field direction, and true cross-field transport
in which the particle guiding center eventually separates from
its original field line.

The classic FLRW theory (Jokipii 1966), in which particles
follow magnetic field lines with a fixed pitch angle, directly
related the perpendicular diffusion coefficient x; to the field
line diffusion coefficient D. Meanwhile another viewpoint in
terms of scattering led to a relation between k; and the
parallel diffusion coefficient x| (Axford 1965; Gleeson 1969).
Nonlinear guiding center (NLGC) theory (Matthaeus et al.
2003) successfully accounted for both factors, allowing the
guiding center motion to decorrelate due to both parallel (pitch-
angle) scattering and the random walk of the guiding magnetic
field line, for transverse magnetic fluctuations with a general
power spectrum. This theory has provided a much closer match
to observations (Bieber et al. 2004) and computer simulation
results for x; (see also Minnie et al. 2007; Ruffolo et al. 2008),
and its framework has attracted theoretical interest and inspired
numerous related theories (e.g., Shalchi et al. 2004, 2006; le
Roux & Webb 2007; Qin 2007; Shalchi 2010).

The original NLGC theory (Matthaeus et al. 2003) used the
Taylor-Green—Kubo (TGK) formula (Taylor 1922; Green 1951;
Kubo 1957)

(Ax?)

Kyx = lim
=00

= /0 (0(0)0,(1))dt (H

for the asymptotic particle diffusion coefficient «,, along
a coordinate x perpendicular to the large-scale magnetic
field direction z, based on the guiding center velocity V.

That work used
2
(Ux(0)U: (1)) =~ %(vz(())vz(t))(bx((), 0)bx[x(r), 1),  (2)
0
for the displacement x(¢) of the particle guiding center trajectory
in a large-scale magnetic field ByZ. The authors set a®> = 1/3, a
factor which effectively accounts for the replacement of v, with
the particle velocity v, in the correlations. Then the Lagrangian
correlation (b, (0, 0)b,[x(t), t]) was evaluated in terms of the
Eulerian correlation function and power spectrum by using
Corrsin’s independence hypothesis (Corrsin 1959) and setting
the displacement distribution to that for asymptotic diffusion
(Salu & Montgomery 1977), leading to an implicit formula for
k1 in terms of input values of k,, and the power spectrum
of magnetic fluctuations. A related approach was previously
used to derive a field line diffusion coefficient (Matthaeus et al.
1995) that is reasonably close to values from direct computer
simulations (Gray et al. 1996; Ghilea et al. 2011).

In the present work, we consider an alternate interpretation of
NLGC that replaces the diffusive distribution of guiding center
trajectories with a random ballistic distribution, for the purpose
of calculating the Lagrangian magnetic correlation function
(bx(0, 0)b,[x(2), t]). This approach was recently introduced for
calculating the field line diffusion coefficient and led to some
substantial improvements in the match with direct simulation
results (Ghilea et al. 2011). It is analogous to concepts in
random walk theory in which the mean free path is determined
by the extent of ballistic motion between scattering events. In
this context, note that v, decorrelates over the decorrelation
scale of v, or by, whichever is shorter. This implies that the
decorrelation of v, in the TGK integral (which determines k)
takes place over a distance scale for which the parallel motion
is approximately constant and the field lines are approximately
straight, so the guiding center motion can be treated as ballistic
in random directions determined by the distribution of magnetic
field directions (Figure 1). (As illustrated in the figure, at
longer times the guiding center velocity will change, the particle
will reverse its direction along B, and the particle will depart
from its original guiding field line.) We demonstrate that this
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Figure 1. Illustration of the random ballistic interpretation of nonlinear guiding
center (NLGC) theory. The diffusion coefficient x| of energetic charged particle
motion (red line) perpendicular to the large-scale magnetic field is related to
the decorrelation (i.e., change in direction) of a perpendicular component of
the guiding center velocity (GC, blue line), which roughly follows a local
magnetic field line (black line). Over the relevant distance scale, the guiding
center motion can be approximated as ballistic (i.e., with constant velocity)
along random directions distributed like the magnetic field directions. Such
random ballistic decorrelation (RBD) is determined using the framework of
NLGC theory, including the effects of the field line random walk and the parallel
scattering of particle trajectories.

approach, together with a backtracking correction (BC), leads
to a substantial improvement in the match with direct computer
simulations of the perpendicular diffusion of energetic charged
particles.

2. RANDOM BALLISTIC DECORRELATION

We consider the application of Corrsin’s independence hy-
pothesis (described below) assuming a Gaussian distribution of
displacements, where diffusive decorrelation (DD) or random
ballistic decorrelation (RBD) is used to describe the variance
o along each direction. DD considers that the asymptotic dif-
fusion also governs the displacement distribution at early times
during the decorrelation process, so a = 2k;;t, while RBD
assumes the decorrelation is determined by ballistic motion of
guiding centers at early times in random directions, at guiding
center velocity V, depending on the fluctuating magnetic field,
with oiz = (Diz)tz.

Let us assume axisymmetry, define the fluctuation amplitude
b so that b* = (b} + b}) = 2(b}), and define v, as the particle
velocity along the local magnetic field. As a special case of
Equation (2) for t = 0, we use

- a
(03) = (97) = B—g(v§)<bi> = TB_g’ (3)
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where we use (vZ) = v?/3 for an isotropic distribution of
particle velocities. We also use (9%) = v?/3 to obtain

2 2
(72) = % <1 - a2%> : )

Note that for b/By > a~' =+/3, Equation (4) gives a non-
sensical negative value for (f)f). Thus, we will consider this

RBD approach to be limited to 5/ By < +/3. Note that the NLGC
framework in general is also limited to magnetic fluctuation am-
plitudes that are not too great, in the sense that NLGC assumes
transverse fluctuations, and if > By one would not expect
the (weak) mean magnetic field to force the fluctuations to be
strongly transverse.

As in the original derivation of NLGC, we use Equations (1)
and (2), with (v.(0)v,(1)) = (v?/3)e™"/" for a pitch-angle scat-
tering time t, to obtain

a?v?

—t/r
35 (Dx(0, 0)bx[x(1), t])dt. ®)

KXX

We then make use of Corrsin’s independence hypothesis to relate
the Lagrangian correlation (b, (0, 0)b,[x(?), ¢]) to the Eulerian
correlation function R,, and the probability of displacement x
at time ¢, so that

Koxx 332 / 71/1/ Ry, (x, t)P(x|t)dx dt. (6)

Following Matthaeus et al. (2003), we use the Fourier trans-
form of the correlation function R, (X, t) as the power spectrum
Sex(K, 1) = S, (K)e 7®" and assume independent guiding cen-
ter displacement probability distributions along each coordinate
to obtain

7t/'r y(K)t *© —ikyx
Kex 332 / fs (K)e™ (/_we P(xlt)dx)
x </ ”‘«‘yP(yIt)dy> (/Oo E”‘ZzP(zlt)dZ> dkdt.

(7

For a Gaussian displacement distribution P(x|t), we have
(Ghilea et al. 2011)

oo i 1
/ e X P(x|)dx = exp (—Ekfaxz) )

[ee]

and analogous formulas for y and z. For RBD we use a[.2 =

(f)iz)tz, and substituting Equation (8) into Equation (7) yields
2,2

g / S ()T (K) dk, ©)

Kxx =

where the mean free time 7'(K) is given by

o t 1 -
T(k) = fo exp [—; —y ki — > lef(vf)t2:| dt. (10)

Performing the #-integration and using 1/t = v/A; = v*/(3k,),
we obtain

T(k) = \/7 aerfc(a) (11
2[5, e
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and
Kyx 2[ f 5@ erfe(erdk  (RBD),
L S k()
(12)
where 5
oz /Bty ®) (13)

V22 k()

and the expressions for (¥; 2y are given by Equations (3) and (4).

Note that the original DD interpretation of Matthaeus et al.
(2003) used the formula for asymptotic diffusion with «,, in
the displacement distribution, yielding an implicit equation for
kxx. In contrast, the RBD theory uses a predetermined random
ballistic formula for the displacement distribution and yields an
explicit formula for «,,, as in analogous theories for the field
line diffusion coefficient (Ghilea et al. 2011). For numerical
evaluation, NLGC-type theories based on DD typically require
an iterative solution, whereas NLGC/RBD can be evaluated
without iteration.

3. BACKTRACKING CORRECTION

Previous simulations have shown that the perpendicular trans-
port of energetic charged particles is characterized by ballistic
(free-streaming) guiding center motion at short times, followed
by subdiffusion (Qin et al. 2002a) and later, if the fluctuations
have sufficient transverse complexity, by asymptotic diffusion
(Qin et al. 2002b). This subdiffusion is due to a parallel (pitch-
angle) scattering process that causes a particle to reverse its
motion along the local field line and partially retrace its steps.
Such “backtracking” leads to a negative v, -correlation function
over a certain time range, hence the reduction in the running
perpendicular diffusion coefficient. In some cases this leads to
subdiffusion (see Qin et al. 2002b and Section 4 of Ruffolo et al.
2008).

Backtracking was inherent in the original NLGC/DD theory
(Matthaeus et al. 2003). The use of diffusive displacements
means that the displacements for which the correlation function
is sampled can undergo a random walk, including backtracking.
It was assumed that backtracking did not completely cancel
out the perpendicular guiding center excursions due to other
physical effects. This is not the case for the RBD calculation,
which is based on ballistic guiding center trajectories.

For RBD theory, we note that Equations (9) and (10) assign
a mean free time 7'(k) to individual k-components of the
turbulence, which are averaged with weighting according to
the power spectrum, to determine «,,. Conceptually this relates
to the v,—b, independence hypothesis of Matthaeus et al. (2003).
For magnetostatic fluctuations with y = 0, Equation (11) gives
T ~ 1 for low k and T decreases for higher k. Thus, for modes of
low k, the mean free time is determined by the parallel scattering,
whereas for higher k it is determined by the field line random
walk.

This random ballistic calculation of the mean free time does
not account for backtracking. Consider low k, for which the
decorrelation in Equation (10) is dominated by the scattering
term (first term in the exponential) while b is nearly constant.
Then the perpendicular displacement associated with 7'(K) will
be largely canceled out by subsequent backtracking. A similar
effect leads to subdiffusion in simulation results (i.e., running
Kk decreases with increasing ¢) for fluctuations with insufficient
transverse complexity (Qin et al. 2002a), whereas NLGC yields
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a much larger asymptotic value of «,, (see Run 12 of Ruffolo
et al. 2008).

Therefore, we introduce a heuristic BC for RBD that reduces
the influence of such low-k modes by reducing 7(k) and
therefore their contribution to the overall k. We multiply 7 (k)

by e, which simplifies Equation (11) to yield

erfc(a)
T(k) = / (14)
k2 ~2>

and

\/’ / Ser(K)
= JX k)
Uz/(3Kzz) +y(K)
23 kHv7)

This BC is related to the terms that are linear and quadratic in ¢,
in the exponential of Equation (10). Here, e~ servesasa simple
“switch” that is close to 0 when k is sufficiently low that the linear
term dominates, suggesting a strong effect of backtracking,
while it approaches 1 for higher k. Note also that for a given k,
there is a time # when the linear and quadratic terms are equal,
i.e., the field line random walk becomes important. At that time
we have t/T ~ «?, and substitution into the parallel velocity
correlation term e~'/* suggests the use of e~ to account for
backtracking effects.

x erfc dk (RBD/BC). (15)

4. NUMERICAL EVALUATION OF ANALYTIC THEORIES
USING 2D+slab TURBULENCE

To numerically evaluate analytic theories for comparison with
computer simulation results, we need to specify the power
spectrum. We employ a two-component 2D+slab model of
transverse magnetic fluctuations in which the power spectrum is
a sum of a two-dimensional (2D) power spectrum, depending on
ky and ky, and a slab power spectrum depending on k.. The latter
represents parallel Alfvénic fluctuations and the former idealizes
the quasi-2D structures, including “flux tubes,” that can develop
from interactions of such waves (Shebalin et al. 1983; see also
Borovsky 2008; Seripienlert et al. 2010; and references therein).
The two-component model was motivated by observations of
interplanetary magnetic fluctuations, indicating quasi-slab and
quasi-2D components (Matthaeus et al. 1990; Weygand et al.
2009), which can be modeled using a ratio of slab:2D fluctuation
energies of approximately 20:80 (Bieber et al. 1994, 1996). This
model has provided a useful description of the parallel transport
of particles in the inner heliosphere (Bieber et al. 1994), and was
used by most studies that implemented and/or tested NLGC
theory.

For the special case of 2D+slab fluctuations, Equations (12)
and (15) and their DD equivalent split into two terms using S3/2
and S?°. However, Shalchi (2006) has proposed that the direct
contribution of slab fluctuations to the perpendicular transport
should be subdiffusive, and that the S;l;‘b term should not be
included in the equation of « . (Note that slab fluctuations can
still play a role as a key determinant of A, which enters into
the 2D contribution.) We refer to this proposal as the Shalchi
slab hypothesis. We employ this in the present work, and a
detailed evaluation of its accuracy will be presented in a future
publication (D. Ruffolo et al., in preparation).
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Figure 2. Asymptotic perpendicular diffusion coefficient «; of 100 MeV
protons in 2D+slab turbulence with a slab fraction f; = 0.2 as a function

of the magnetic fluctuation amplitude b/By. Using the NLGC framework,
random ballistic decorrelation with backtracking correction (RBD/BC, thick
line) provides a closer match with computer simulation results (solid circles)
than the original DD theory (long-dashed line) and uncorrected RBD (short-
dashed line). In the present work we also employ the Shalchi slab hypothesis
(Shalchi 2006).

Therefore, when using the 2D+slab model of magnetic
turbulence, in Equation (12) or Equation (15) we include only
the 2D portion of the power spectrum, which is concentrated at
k, = 0. We also assume the fluctuations to be magnetostatic,
with y = 0, and axisymmetric. For RBD without the BC, we
have

ox 332 [/ /

L SRk k)
koy/(T3)

and with the BC we have

= Sls

SRk

ku/l22)

e erfc(oz)dk dk, (RBD), (16)

erfc(a)dk, dk, (RBD/BC), (17)

where

U2

. (18)

3ie.cky \/2(i2)
and k7 = k2 + k2.

For comparison, we also consider the original DD theory, and
for our model assumptions we obtain

Kyx = 3B2/ /

The analytic theory expressions were evaluated numerically
using the MATHEMATICA program (Wolfram Research, Inc.)
to perform continuous k-space integrals. For the input value
of k., we used the simulation value.

SzD(kx,k Ydk.dk,
v2/(Bkcz) + k koxx

(DD). (19)
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Figure 3. Asymptotic perpendicular diffusion coefficient «; in 2D+slab
turbulence with f; = 0.2 and b/ By = 0.5 as a function of the proton gyroradius
in units of the turbulence bendover scale. The simulation values shown here
(solid circles) correspond to proton energies ranging from 0.1 MeV to 50 GeV
for By = 5nT and A = 0.02 AU. In most cases, the RBD/BC theory (thick line)
provides a better explanation of the computer simulation results (solid circles)
than the original DD theory (dashed line).

5. COMPARISON WITH COMPUTER SIMULATIONS

We have also performed direct computer simulations to
trace particle orbits in 2D+slab magnetic turbulence. While the
simulations inevitably involve some discretization and statistical
errors, they do avoid key assumptions of the analytic work, and
thus provide an independent check of their validity.

The computer simulations were performed using the methods,
power spectra, and parameter values described by Ruffolo et al.
(2008). In particular, all distances are in units of A = 0.02 AU,
the slab and 2D turbulence bendover scale,” and velocities are
in units of the speed of light c¢. Simulations were performed
over a sufficient time for all «;; to approach asymptotic values,
within statistical errors. We assume axisymmetry about the
large-scale field direction, so «,, and ky, should be the same
within statistical errors, which we verified in all cases. We
report k| = (Kxx +kyy)/2, which can be compared directly with
Ky, from theories. In some contexts, we use «; as a synonym
for i,y

Figure 2 shows the dependence of «, (in units of cA) on
the overall fluctuation amplitude b/ By, using f, = b2, /(b2 +
b%D) = 0.2. It is apparent that the RBD/BC version (thick lines)
agrees with computer simulation results (solid circles) better
and over a wider range of b/ By values than either the DD theory
(long-dashed lines) or RBD without the BC (short-dashed lines),
over the range of applicability of RBD (b/By < 1/a = +/3). We
have also examined the dependence on the proton gyroradius
(Figure 3), which is related to its energy, for fixed f; = 0.2 and
b/ By = 0.5. The seven simulations were for protons of kinetic
energy 0.1, 1, 10, and 100 MeV as well as 1, 10, and 50 GeV.
The RBD results, not shown, nearly match DD at Ry /A < 1,
nearly match RBD/BC at R; /A > 1, and are intermediate at
Ry /A= 1. Overall, the RBD/BC theory again provides the best
explanation of the computer simulation results.

5 Ruffolo et al. (2008) incorrectly specified A = 0.027 AU; their simulations
actually used A = 0.02 AU, and calculations were performed for the same
parameters as the simulations.
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6. DISCUSSION

In the present work, we interpret NLGC theory in terms
of particle guiding center trajectories that are ballistic with
constant velocity over the distance scale leading up to their
decorrelation (Figure 1), a standard assumption in random
walk theory based on scattering concepts. Such RBD stands
in contrast to the previous assumption of DD in which the
displacements were taken to spread according to asymptotic
diffusion. The use of Corrsin’s hypothesis for RBD is similar
in spirit to a Fokker—Planck approach in which the unperturbed
trajectory has a constant but random velocity whose directional
distribution is related to the distribution of magnetic fluctuations.
Itis also related to the Langevin-equation approaches of Balescu
et al. (1994). Our use of a heuristic BC that is specific to
RBD leads to a substantial improvement in the match with
direct computer simulation results, compared with DD and RBD
without BC.

Note that RBD theory does not require a small fluctuation
amplitude, and indeed RBD/BC matches computer simulation
results very well for amplitudes up to b/ By ~ 1 (Figure 2). The
inapplicability for b/By > 1/a = /3 indicates room for future
improvements to obtain a truly non-perturbative theory. At the
same time, we should note that the NLGC framework treats only
transverse magnetic fluctuations. In the interplanetary medium
of the inner heliosphere, transverse fluctuations account for
~90% of the magnetic fluctuation energy (Belcher & Davis
1971), so NLGC is well justified in this case. However, for
large amplitudes with b/By>> 1 there is little reason for the
fluctuations to be so strongly anisotropic, and the NLGC
framework itself may have limited applicability.

Considering the dependence of «, on the proton Larmor
radius, R;, as shown in Figure 3, a discrepancy remains between
NLGC theory and simulation results for the two lowest energies,
0.1 and 1 MeV. The discrepancy is substantially reduced for
RBD/BC. For energies of 10MeV to 10GeV (i.e., Ry /A =
0.031-2.4), RBD/BC theory matches the simulation results very
well. The increase with R, /A saturates in this range because |
is roughly proportional to v (Minnie et al. 2009), which saturates
at c.

The NLGC framework in general could break down when
Ry /A > 1. In this weak scattering limit NLGC considers that
guiding center motion tracks the local field line random walk,
whereas such a large gyroradius implies that particles experience
fluctuations independent from those at the guiding center,
and low-wavelength fluctuations should have less influence on
perpendicular diffusion when they are averaged over such a
large gyroradius. In the interplanetary magnetic field near Earth
of about 5nT with A ~ 0.02 AU (Jokipii & Coleman 1968), we
have R; ~ A for a proton energy of about 4 GeV, and in the
local galactic magnetic field of about 0.4 nT (Opher et al. 2009),
where A ~ 100 pc (Armstrong et al. 1995; Dyson & Williams
1997), we have R, ~ A for a proton energy of ~4 x 10'7 eV.

We have searched for and found this effect at the high-
est proton energy considered, 50 GeV, which corresponds to
Ry /A = 11 for our parameter values of By = 5nT, b/By = 0.5,
and f; = 0.2, which are applicable to the interplanetary medium
near Earth. The perpendicular diffusion coefficient k ; decreases,
presumably due to cancellation of low-wavelength fluctuations
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over the gyro-orbit, while all NLGC theories predict a slight
increase. In any case, the above energies where R; ~ X for
interplanetary and interstellar propagation are sufficiently high
that NLGC theories remain applicable to a wide range of cosmic
ray and energetic particle transport problems.
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