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ABSTRACT

The interpretation of a wide variety of astrophysical observations requires an understanding of how
ionization fractions depend on plasma parameters. Observations have indicated that electron velocity distri-
butions in space plasmas generally have enhanced high-energy tails. Instead of a Maxwellian distribution,
they are better described by a kappa distribution, characterized by the kinetic temperature, T, and a parame-
ter, �, that quantifies the deviation from aMaxwellian. We calculate and tabulate the equilibrium ionization
fractions of N, O, Ne, Mg, S, Si, Ar, Ca, Fe, and Ni, based on a balance of ionization and recombination
processes, for 104 K � T � 108 K (or up to 109 K for Fe and Ni) and for various Maxwellian and kappa
distributions. For a Maxwellian distribution of electrons, the mean charge as a function of temperature is
characterized by plateaux corresponding to closed-shell charge states, with transitions over narrow ranges of
logT . However, for kappa distributions, which are more realistic models of the observed electron distribu-
tions in coronal or space plasmas, those transitions are substantially broader. We find that a lower � value
(more suprathermal electrons) frequently leads to a higher mean charge, especially for low temperatures, but
can also lead to a lower mean charge in certain temperature ranges; these effects are associated with the sharp
energy thresholds and resonances of ionization and dielectronic recombination cross sections, respectively.
The results provide information for various applications in which observed ionization fractions are used as
diagnostics of astrophysical plasmas.

Subject headings: atomic data — atomic processes — plasmas

On-line material:machine-readable table

1. INTRODUCTION

There is a wide range of applications in astrophysics and fusion research for calculations of ionization fractions and mean
charges of various elements in hot plasmas. The observed ionization fractions, or the presence of a given ion, is frequently used
as a diagnostic of the source plasma (e.g., of its temperature), especially in extreme ultraviolet or X-ray spectroscopy (e.g.,
Gallagher et al. 2001; Smith et al. 2001). Examples of astrophysical applications include solar physics topics, such as the
corona, active regions, jets, flares, the FIP effect, CMEs, and the solar wind (e.g., Esser & Edgar 2000; Brosius 2001; Roussev
et al. 2001). Charge state observations are used to indicate conditions at other stars or stellar-mass objects, including their
coronae, jets, accretion shocks, accreting black holes, and supernova remnants (e.g., Drake et al. 2001; Huenemoerder, Cani-
zares, & Schulz 2001; Wu, Cropper, & Ramsay 2001), and in the interstellar medium (e.g., Blair et al. 2000; Danforth, Blair, &
Raymond 2001). There are further applications about galaxies and active galactic nuclei, jets, quasars (e.g., Fang et al. 2001;
Hicks & Canizares 2001), and intercluster mediums (e.g., Reynolds, Heinz, & Begelman 2001). Ionization state observations
are also used to study the intergalactic medium, shocks between galaxies, and cosmology (e.g., Fang & Canizares 2000).
Furthermore, in fusion experiments, ionization fractions are used to study thermonuclear and magnetically confined fusion
plasmas (e.g., May et al. 2000). Note that most of these applications require knowledge of the temperature dependence of
ionization fractions, not only the mean charge.

Although there are several recent, useful tabulations of ionization fractions of various elements in a plasma (e.g., Arnaud &
Rothenflug 1985; Arnaud & Raymond 1992; Mazzotta et al. 1998), these are based on the assumption that the electron veloc-
ity follows a Maxwellian distribution. However, that distribution would seem to be the exception, rather than the rule, for
astrophysical plasmas (Collier 1999). Direct measurements of electron distributions in the solar wind, planetary magneto-
spheres, and other space plasmas show that the number of electrons at high energy is much greater than that for aMaxwellian
distribution (e.g., Montgomery, Bame, & Hundhausen 1968; Feldman et al. 1975; Owocki & Scudder 1983; Maksimovic,
Pierrard, & Riley 1997). Enhanced suprathermal tails have also been inferred in the solar corona, solar transition region, and
radio sources inside and outside our solar system (Roussel-Dupré 1980; Shoub 1983; Owocki & Scudder 1983; Owocki &
Canfield 1986; Maksimovic et al. 1997). In other words, astrophysical plasmas are rarely in thermal equilibrium. Therefore,
the goal of the present work is to explore and tabulate how ionization fractions are affected by electron distributions with
enhanced suprathermal tails.

One distribution that provides a suitable parameterization of observed data is the kappa distribution,
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which is characterized by the kinetic temperature, T, and a parameter, �, and where A� � �ð�þ 1Þ=½ð�� 3=2Þ3=2�ð�� 1=2Þ�,
and kB is the Boltzmann constant (Olbert et al. 1967; Olbert 1969). The kappa distribution (sometimes called a generalized
Lorentzian) is a convenient and widely used analytic form that closely represents the nearly Maxwellian distribution of the
low-energy ‘‘ core,’’ while the parameter � controls the power-law form of the high-energy ‘‘ tail.’’ Note that as � ! 1, the dis-
tribution becomes Maxwellian, while a lower � value implies a more enhanced and harder power-law tail. More specifically,
for E4kBT , we have f�ðEÞ / E�ð�þ1=2Þ, while the speed distribution is f�ðvÞ / E��. Thus, reducing � makes the distribution
more non-Maxwellian. Indeed, at a fixed kinetic temperature, T, which fixes the mean energy or secondmoment of the velocity
distribution, the enhanced, power-law tail at high energy is balanced by a redistribution at lower velocity as well. The overall
effect is that a lower � value gives an enhanced electron distribution at low speeds, a depressed distribution at medium speeds
(for E of a few times kBT), and an enhanced, power-law tail at high energy (see Fig. 1 of Owocki & Scudder 1983).

It has been suggested that non-Maxwellian distributions with enhanced high-energy tails may occur as an effect of the
Rutherford cross section for the plasma electrons scattering off the background plasma (Scudder & Olbert 1979a; Scudder &
Olbert 1979b), high gradients of particle concentration or temperature (Roussel-Dupré 1980; Shoub 1983; Owocki & Scudder
1983), velocity-space diffusion due to a suprathermal radiation field (Hasegawa, Mima, & Duong-van 1985), or wave-particle
interactions (e.g., Ma & Summers 1998; see also corrections in Ma & Summers 1999a, 1999b). For observed data, various
values of � have been obtained from fits to electron distributions in space plasmas. For example, Pierrard, Maksimovic, &
Lemaire (1999) found � ’ 3:1 and � ’ 2 for the slow and high-speed solar wind, respectively. Furthermore, Maksimovic et al.
(1997) have fitted the kappa function to 16,000 electron velocity distributions measured in the solar wind by the electron
plasma instrument on board the Ulysses spacecraft. These authors then derive � values of ’2.71 and ’1.90 for the coronal
source plasmas of the slow and fast wind, respectively.

Previous calculations of ionization fractions have been performed for a Maxwellian distribution of the plasma electron
velocity (e.g., Arnaud &Rothenflug 1985; Arnaud &Raymond 1992;Mazzotta et al. 1998). For kappa distributions, the semi-
nal work of Owocki & Scudder (1983) examined the ionization ratios Oþ6=Oþ7 and Feþ11=Feþ12; Dzifčáková (1992) has calcu-
lated ionization fractions for Fe; and Luhn & Hovestadt (1985) and Ko et al. (1996) presented mean charges for various
elements (useful for specialized applications regarding the solar wind and solar energetic particles). To our knowledge, the
present work is the first to present ionization fractions of multiple elements for kappa distributions. We also demonstrate
consistency with existing calculations for aMaxwellian distribution.

The ionization reactions considered here include direct ionization and excitation-autoionization (Arnaud & Rothenflug
1985; Arnaud & Raymond 1992; Sampson & Golden 1981). In addition, radiative recombination (Shull & Van Steenberg
1982a) and dielectronic recombination (Mazzotta et al. 1998) reactions are considered. In this case ions are taken to be slow,
or essentially at rest with respect to the typical electron speed, which is often the case in their source plasma because of their
much greater mass.

We only consider two-body collisions with plasma electrons, and we neglect collisions with other plasma ions, because the
relative speed between two thermal ions is typically below the ionization threshold; such collisions would be important in a cal-
culation of ionization fractions for high-speed ions (Kocharov et al. 2000; Ostryakov et al. 2000; Kartavykh et al. 2002).
Furthermore, we only consider processes involving the ground states of ions. This assumption is appropriate for low-density
plasmas in which the lifetime of excited states is smaller than the mean collision time, as pointed out by Arnaud & Raymond
(1992), or even in higher density plasmas where the radiation field is not in equilibrium with the plasma, as in the case of the
solar corona.

2. CALCULATION PROCEDURE

In this section, we present the procedure for calculating ionization and recombination rate coefficients assuming kappa dis-
tributions for the electron velocity, and deriving equilibrium ionization fractions and mean charges. The overall procedure is
outlined in Figure 1. It is most instructive to start by explaining the desired final results (equilibrium ionization fractions and
mean charges) and then to describe the steps needed to get there.

The main goal of this work is to calculate equilibrium ionization fractions, for applications as described in x 1. The equili-
brium mean charge is simply the mean charge as weighted by the equilibrium ionization fractions. Naturally, the mean charge
has much less information content, but it does provide a useful summary of how kappa distributions affect the ionization
fractions, and indeed some observational work directly reports the mean charge.

The rate of change of nq, the number density of ions of charge q, is given by

dnq
dt

¼ ne½nq�1Sq�1 � nqðSq þ �qÞ þ nqþ1�qþ1� ð2Þ

for q ¼ 0; . . . ; Z, where Sq and �q are temperature- and �-dependent rate coefficients (in cm3 s�1) of ionization from charge q
to qþ 1 and recombination from q to q� 1, respectively. In equilibrium, we have dnq=dt ¼ 0 and

nqSq ¼ nqþ1�qþ1; for q ¼ 0; . . . ; Z � 1 : ð3Þ

Therefore, the equilibrium ionization fractions (nq=ntot, where ntot is the total density of all charge states) can be immediately
determined from the ionization and recombination rate coefficients.

Now comes the complicated part: calculating rate coefficients for the case of kappa distributions. We find it convenient to
consider � values that are integers, in which case most of the integrals can be performed analytically; for noninteger values,
those integrals would instead be evaluated numerically. First, consider the case of ionization rate coefficients (starting at the
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point indicated by ‘‘ I ’’ in Fig. 1). Cross section formulae for direct ionization and excitation-autoionization are available in
the literature for all charge states of various elements (Arnaud & Rothenflug 1985; Arnaud & Raymond 1992; Sampson &
Golden 1981). From these, we can derive ionization rate coefficients by integrating over the electron velocity distribution
function:

S ¼
Z

v�I ðvÞf�ðvÞdv : ð4Þ

The cross section formulae and corresponding rate coefficient expressions are shown in xx 2.1 and 2.2.
For recombination processes, the procedure has one extra step. The most recent results in the literature have not presented

cross section formulae, but rather recombination rate coefficients under the assumption of a Maxwellian distribution for the
electron velocity. Therefore, for recombination processes we start at point ‘‘ R ’’ in Figure 1: we first need to convert the rate
coefficients provided in the literature (for theMaxwell distribution) to cross sections as a function of collision velocity (i.e., the
electron velocity, since we are considering the case of slow ions). For dielectronic recombination, we use the rate coefficients
(for Maxwell distributions) provided by Mazzotta et al. (1998). Note, however, that in some references, rate coefficients are
expressed in a form that is apparently not related to a cross section formula. Thus, we cannot make use of the ionization rate
coefficients of Voronov (1997). Similarly, we do not use the radiative recombination rate coefficients presented by Arnaud &
Raymond (1992) or Verner & Ferland (1996) (which were in turn used by Mazzotta et al. 1998); instead, we use those of Shull
& Van Steenberg (1982a). Nevertheless, our ionization fractions in the limit of a Maxwellian distribution are very similar to
those of Arnaud &Raymond (1992) andMazzotta et al. (1998) (see x 3.2).

After deriving the recombination cross sections, we can integrate over a kappa distribution for the electron velocity to
obtain the desired rate coefficients:

� ¼
Z

v�RðvÞf�ðvÞdv : ð5Þ

The cross section and rate coefficient formulae for recombination processes are shown in xx 2.3 and 2.4. Throughout this
section, quantities of energy are to be expressed in eV, and constants taken from the literature refer to the numerical values
(without units) unless otherwise indicated. Finally, some specialized numerical techniques are described in x 2.5.

2.1. Direct Ionization

Direct ionization (DI) is a process that can take place after the collision between a free electron and ion, in which an electron
in the ion is directly excited to become another free electron. For direct ionization, the following cross section formula was
introduced by Younger (1981). This form has been widely used, e.g., by Arnaud & Rothenflug (1985), Arnaud & Raymond

Fig. 1.—Calculation procedure for each element. The procedure starts at ‘‘ R ’’ for recombination rates and at ‘‘ I ’’ for ionization cross sections obtained
from the literature (see text for details).
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(1992), andMazzotta et al. (1998):

�DIðEÞ ¼
X
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� 10�14 cm2 ; ð6Þ

where for a level j, u ¼ E=Ij, E is the energy of the incident electron, and Ij is the ionization potential. In this and all other ion-
ization cross sections, we take the contribution of a level j to be zero for u < 1, i.e., below threshold. Here the constants Aj, Bj,
Cj, andDj for most ions are taken fromArnaud &Rothenflug (1985). Only for Fe ions are the constants taken fromArnaud &
Raymond (1992).

For a kappa distribution we obtain the rate coefficient
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where y ¼ Ij=½kBTð�� 3=2Þ�. The last term cannot be calculated analytically; therefore, numerical integration is necessary.

2.2. Excitation-Autoionization

Excitation-autoionization (EA) takes place by a process similar to the direct ionization process. However, in this case an
electron in an inner shell is excited. With its high binding energy, the excitation energy may be insufficient to ionize the inner
shell electron, which just releases the excitation energy and comes back to the ground state. Then a different, outer shell elec-
tron can receive that energy and become another free electron. Following the advice of various articles in the literature, an
excitation-autoionization cross section (�EA) is used for certain ions. In particular, there are suggested forms for selected
multielectron Fe ions, for the ions Ca+0 and Ca+1, and for (non-Fe) ions of various sequences; in all other cases, �EA is
neglected in comparison with �DI. A sequence is defined by the number of remaining electrons, e.g., the lithium sequence refers
to ions with three remaining electrons, so ions in the same sequence have a similar ground state electronic configuration.

2.2.1. Selected Fe Ions

For selected multielectron Fe ions, the EA cross sections are calculated by the following formula (Arnaud & Raymond
1992):

�EAðuÞ ¼
1

uIEA
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where u ¼ E=IEA, E is the incident electron energy, IEA is the EA threshold energy, and A, B, C, D, and F are constants taken
from a table of Arnaud & Raymond (1992). Note that these authors use nonzero constants only for Feþ2 to Feþ15 and for
Feþ23.

For kappa distributions, the rate coefficient is
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where

y ¼ IEA
ð�� 3=2ÞkBT

; c ¼ 6:69� 10�9A�

ðkBTÞ3=2
: ð10Þ

446 WANNAWICHIAN ET AL. Vol. 146



2.2.2. Caþ0 andCaþ1

For Ca+0 and Ca+1, EA cross sections are fromArnaud &Rothenflug (1985):

�EAðuÞ ¼
a

u
½1þ b lnðuÞ� cm2 ; ð11Þ

where u ¼ E=IEA.
For Caþ0: a ¼ 6:0� 10�17 cm2; b ¼ 1:12; IEA ¼ 25 eV. For Caþ1: a ¼ 9:8� 10�17 cm2; b ¼ 1:12; IEA ¼ 29 eV.
For a kappa distribution, the rate coefficient becomes

SEAðTÞ ¼ 6:69� 107
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for y defined as in equation (10).

2.2.3. Li Sequence

In the case of the lithium sequence (i.e., ions with three electrons, Nþ4, Oþ5, Neþ7, etc.) the cross section formula for
excitation-autoionization is (Sampson &Golden 1981)
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where Z is the nuclear charge. Note that u� �2, the argument of the step function, H, is the difference between the impact
electron energy and the threshold energy for the transition.

For a kappa distribution, the rate coefficient is
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2.2.4. Na Sequence ðZ � 16Þ
We use the EA cross section from Arnaud & Rothenflug (1985) when considering ions of the sodium sequence with atomic

numberZ � 16:

�EAðuÞ ¼
a

u

�
1� 1

u

�
cm2 ; ð16Þ

where u ¼ E=IEA, IEA ¼ 26ðZ � 10Þ eV, and a ¼ 2:8� 10�17ðZ � 11Þ�0:7.
The rate coefficient for kappa distributions is

SEAðTÞ ¼ 6:69� 107
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2.2.5. Na Sequence ð18 � Z � 28Þ
For ions of the sodium sequence, in the range 18 � Z � 28, we use the EA cross section of Arnaud &Rothenflug (1985):
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where u ¼ E=IEA, IEA ¼ 11ðZ � 10Þ1:5 eV, and a ¼ 1:3� 10�14ðZ � 10Þ�3:73.
For kappa distributions, the rate coefficient is
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2.2.6. Mg toAr Sequences

For sequences frommagnesium to argon, the EA cross section of Arnaud &Rothenflug (1985) can be calculated as follows:

�EAðuÞ ¼
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23:7ðZ � 13Þ1:29 eV; P sequence ;

40:1ðZ � 14Þ1:10 eV; S sequence :
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The rate coefficient for the case of a kappa distribution is
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2.3. Radiative Recombination

Radiative recombination (RR) is the process whereby a free electron is bound to the ion after the collision. The electron
emits its excess energy in the form of electromagnetic radiation.

For all elements, the radiative recombination cross section is related to the rate coefficient (for a Maxwellian distribution)
from Shull & Van Steenberg (1982a). Those authors specify the rate coefficient formula:

�RRðTÞ ¼ AradðT=104 KÞ�� cm3 s�1 ; ð26Þ

where the coefficients Arad and � are presented in Table 2 of that paper. We have corrected their tabulated values according to
their published errata (Shull & Van Steenberg 1982b), and an apparent misprint in the value of Arad for recombination from
Caþ11 to Caþ10 as pointed out by Arnaud & Rothenflug (1985). The corresponding cross section has the form of a power law
(Luhn &Hovestadt 1987):

�RRðEÞ ¼
1:495� 10�8

�ð3=2� �Þ
ðkBÞ�

ð104 KÞ�� AradE
�ð�þ1=2Þ cm2 : ð27Þ

For a kappa distribution, the rate coefficient is
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ð�� 3=2Þ��þ3=2

T�ð104 KÞ�� cm3 s�1 : ð28Þ

2.4. Dielectronic Recombination

Dielectronic recombination (DR) is more complicated than the previous process. After the collision, the initially free
electron becomes bound and releases its energy, which is taken up by the excitation of another, bound electron. Thus, this is a
resonant process, taking place for specific values of the incoming electron energy. The excited electron comes back to the
ground state by emitting energy through electromagnetic radiation. Finally, the ion has gained one electron. According to
Mazzotta et al. (1998), the same dielectronic recombination rate coefficient formula can be used for all elements. For a
Maxwellian distribution, that formula is

�DRðEÞ ¼
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!
cm3 s�1 : ð29Þ

Each term in the sum corresponds to a different dielectronic transition. The coefficients cj and Ej for each ion are tabulated by
Mazzotta et al. (1998). This rate coefficient corresponds to a cross section that is a sum of delta functions (Luhn & Hovestadt
1987):

�DRðEÞ ¼ 1:495� 10�8
X4
j¼1

cj
�ðE � EjÞ

Ej
cm2 : ð30Þ

For a kappa distribution, the corresponding rate coefficient is

�DRðTÞ ¼ A�

ðkBTÞ3=2
X4
j¼1

cj

"
1þ Ej

ð�� 3=2ÞkBT

#�ð�þ1Þ

cm3 s�1 : ð31Þ

2.5. Numerical Techniques

In the calculation procedure, numerical methods are used to integrate certain terms in the rate coefficients. A newly devel-
oped robust integration method is used to deal with the difficulty of integrating over an infinite domain (which, for example,
causes problems in some commercial software packages). Fortunately, all integrands considered here exhibit a rise to a
maximum value followed by a monotonic decline. The first step of our integration technique is to find a suitable upper limit of
integration over the independent variable, say u. We use the bisection method to determine a sequence of increasing u-grid
points, where the integrand reaches its maximum, half-maximum, quarter-maximum, etc. We integrate separately from the
lower limit to the first u-grid point, from the first to the second, etc., using the two-interval Simpson’s rule. The process was
terminated when integrating to a further u-grid point changed the total integration result by less than a fractional tolerance of
10�4. Finally, we improved the accuracy by increasing the number of intervals used for Simpson’s rule (between u-grid points)
in steps of 2 until the fractional change was less than 10�11. This method was found to be efficient and sufficiently robust to
accommodate the very wide range of � and T values considered in this work.
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3. RESULTS AND DISCUSSION

After determining the rate coefficients, we solved the equations for ionization equilibrium (eq. [3]) to obtain the ionization
fractions and mean charges for various elements. We present them as a function of temperature and the � value, including the
limiting case of a Maxwellian distribution, in Table 1. The ionization fractions for N, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni are
tabulated for � values of 3, 5, and 10 and aMaxwellian distribution. The temperature range is from 104 to 108 (for N to Ca) or
to 109 K (for Fe and Ni). The ionization fraction of charge state q is presented in terms of� logðnq=ntotÞ, where ntot is the total
density of all charge states of that element. The value 9.999 indicates that nq < 10�5ntot for this ion. As examples, Tables 2A,
2B, 3A, and 3B are shown for Fe ions in the cases of Maxwellian and � ¼ 5 distributions for the electron velocity. In these
tables, the symbols ‘‘ *** ’’ indicate that� logðnq=ntotÞ is greater than 5, i.e., nq < 10�5ntot.

TABLE 1

Ionization Fractions for 10 Selected Elements as a Function of Temperature for Various Kappa Distributions

and a Maxwellian Distribution of Electron Velocity

Element Z �a
log T

(K) hQi +0 +1 +2 +3 +4 +5 +6 +7

N ............ 7 3 4.0 1.756 2.471 0.483 0.239 1.047 2.964 9.999 9.999 9.999

N ............ 7 3 4.1 1.994 2.926 0.712 0.209 0.740 2.370 4.966 9.999 9.999

N ............ 7 3 4.2 2.225 3.375 0.977 0.240 0.515 1.882 4.150 9.999 9.999

N ............ 7 3 4.3 2.437 3.799 1.259 0.315 0.368 1.505 3.441 9.999 9.999

N ............ 7 3 4.4 2.622 4.168 1.528 0.417 0.281 1.211 2.818 9.999 9.999

N ............ 7 3 4.5 2.786 4.516 1.796 0.529 0.236 0.989 2.269 9.999 9.999

N ............ 7 3 4.6 2.946 4.830 2.044 0.650 0.224 0.814 1.769 9.999 9.999

N ............ 7 3 4.7 3.139 9.999 2.302 0.792 0.242 0.673 1.310 4.927 9.999

N ............ 7 3 4.8 3.414 9.999 2.604 0.975 0.304 0.575 0.889 4.186 9.999

N ............ 7 3 4.9 3.802 9.999 2.980 1.233 0.436 0.543 0.542 3.516 9.999

Notes.—For charge state q, the ionization fraction is tabulated as � logðnq=ntotÞ, where ntot is the total density of all charge
states of that element. The value 9.999 indicates that nq < 10�5ntot. The full version of this table contains columns for charge
states up to +28, to accommodate elements up to Ni. Table 1 is available in its entirety in the electronic edition of the
Astrophysical Journal Supplement. A portion is shown here for guidance regarding its form and content.

a The letter ‘‘M ’’ indicates aMaxwellian distribution.

TABLE 2A

Ionization Fractions for Fe as a Function of Temperature for a Maxwellian Distribution of Electron Velocity: Fe+0–Fe+13

log T Fe+0 Fe+1 Fe+2 Fe+3 Fe+4 Fe+5 Fe+6 Fe+7 Fe+8 Fe+9 Fe+10 Fe+11 Fe+12 Fe+13 hQi

4.0...... 0.916 0.056 4.000 *** *** *** *** *** *** *** *** *** *** *** 0.879

4.1...... 1.454 0.019 2.166 *** *** *** *** *** *** *** *** *** *** *** 0.972

4.2...... 1.978 0.085 0.778 *** *** *** *** *** *** *** *** *** *** *** 1.156

4.3...... 2.883 0.588 0.131 *** *** *** *** *** *** *** *** *** *** *** 1.739

4.4...... 3.921 1.292 0.023 3.058 *** *** *** *** *** *** *** *** *** *** 1.950

4.5...... 4.718 1.750 0.022 1.506 *** *** *** *** *** *** *** *** *** *** 2.013

4.6...... *** 2.149 0.157 0.528 3.813 *** *** *** *** *** *** *** *** *** 2.289

4.7...... *** 2.691 0.507 0.170 1.968 *** *** *** *** *** *** *** *** *** 2.696

4.8...... *** 3.250 0.901 0.126 0.901 3.640 *** *** *** *** *** *** *** *** 2.999

4.9...... *** 3.876 1.370 0.281 0.378 1.840 *** *** *** *** *** *** *** *** 3.405

5.0...... *** 4.632 1.980 0.613 0.223 0.833 3.046 *** *** *** *** *** *** *** 3.884

5.1...... *** *** 2.700 1.098 0.322 0.371 1.809 4.081 *** *** *** *** *** *** 4.373

5.2...... *** *** 3.524 1.697 0.581 0.208 1.023 2.491 4.933 *** *** *** *** *** 4.798

5.3...... *** *** 4.418 2.383 0.971 0.251 0.542 1.403 3.054 *** *** *** *** *** 5.253

5.4...... *** *** *** 3.191 1.521 0.504 0.350 0.720 1.741 *** *** *** *** *** 5.851

5.5...... *** *** *** 4.174 2.269 0.984 0.441 0.395 0.900 4.000 *** *** *** *** 6.540

5.6...... *** *** *** *** 3.183 1.657 0.767 0.361 0.434 2.657 *** *** *** *** 7.156

5.7...... *** *** *** *** 4.176 2.432 1.232 0.511 0.215 1.712 3.472 *** *** *** 7.583

5.8...... *** *** *** *** *** 3.250 1.768 0.762 0.147 1.047 2.162 3.579 *** *** 7.896

5.9...... *** *** *** *** *** 4.119 2.380 1.117 0.219 0.615 1.201 2.050 3.208 *** 8.313

6.0...... *** *** *** *** *** *** 3.167 1.663 0.513 0.495 0.640 1.007 1.661 2.932 9.144

6.1...... *** *** *** *** *** *** 4.295 2.572 1.189 0.812 0.574 0.528 0.747 1.496 10.476

6.2...... *** *** *** *** *** *** *** 3.859 2.265 1.569 1.012 0.609 0.450 0.749 11.846

6.3...... *** *** *** *** *** *** *** *** 3.771 2.798 1.949 1.240 0.748 0.655 13.618

6.4...... *** *** *** *** *** *** *** *** *** 4.489 3.375 2.393 1.603 1.161 15.030

6.5...... *** *** *** *** *** *** *** *** *** *** 4.907 3.680 2.619 1.870 15.574

6.6...... *** *** *** *** *** *** *** *** *** *** *** 4.920 3.615 2.584 15.858

6.7...... *** *** *** *** *** *** *** *** *** *** *** *** 4.578 3.303 16.168

6.8...... *** *** *** *** *** *** *** *** *** *** *** *** 4.330 2.987 16.574

6.9...... *** *** *** *** *** *** *** *** *** *** *** *** *** 3.943 17.863
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In addition to ionization fractions, we have obtained the equilibrium mean charge for each element, hQi. This is a conven-
ient quantity for summarizing direct measurements of ion populations, e.g., the solar wind (e.g., Gloeckler et al. 1999) or solar
energetic particles (e.g., Möbius et al. 1999). For the latter, hQi has frequently been interpreted as a proxy of the source plasma
temperature. Here we view the mean charge as a convenient statistic for summarizing the effects of a suprathermal, power-law
tail of the electron velocity distribution (as parameterized by the � value) on the ionization balance of each element (Fig. 2).
Such effects are described in x 3.1.

One way in which we have checked our formulae and calculations for kappa distributions is by calculating ionization frac-
tions for large � (here, � ¼ 1000), which should be similar to those for a Maxwellian distribution. This was verified to be the
case for each element and each temperature, as shown in Figure 2. We have also confirmed that for cases where previous
results are available, our calculations are similar to those of other authors, as seen in x 3.2. The magnitude of the differences
between various calculations (Figs. 3 and 4) provides a measure of their uncertainty.

3.1. Effects of a Kappa Distribution on Ionization Fractions andMean Equilibrium Charges

For aMaxwellian distribution of electrons, the mean charge as a function of temperature is characterized by plateaux corre-
sponding to closed-shell charge states, with transitions over narrow ranges of logT . However, for kappa distributions, the
low-temperature ionization fractions are greatly shifted to higher charge, so much so that some plateaux are washed out, while
at high temperatures the transitions between plateaux are substantially broader in logT (see Fig. 2).

To understand the physical basis of these effects, we note that the effect of a kappa distribution (or since � ! 1 implies a
Maxwellian, we may speak of the effect of a lower � value) on ionization or dielectronic recombination (DR) rates depends on
the threshold or resonance energy compared with kBT (Owocki & Scudder 1983), while the fractional effect on radiative
recombination (RR) rates is temperature-independent for the power-law cross sections employed here (as there is no charac-
teristic energy scale for a power law). For a given ionization or DR transition, at low temperatures reducing � can greatly
enhance the rate relative to that for a Maxwellian, because of the greatly enhanced suprathermal tail above threshold. As we
noted in x 1, a lower � value also gives an enhanced electron distribution at low speeds, and a depressed distribution at medium
speeds. Thus, for kBT roughly on the order of the threshold or resonance energy the rate is slightly reduced, and at high tem-
peratures the rate is again enhanced because there are more electrons at low v (though these represent much weaker fractional
changes than that at low temperature). The matter is further complicated by the two recombination processes: for most of the
effects described in this section, RR dominates over DR, so the strong enhancement of high-threshold processes mainly favors

TABLE 2B

Ionization Fractions for Fe as a Function of Temperature for a Maxwellian Distribution of Electron Velocity: Fe+13–Fe+26

logT Fe+13 Fe+14 Fe+15 Fe+16 Fe+17 Fe+18 Fe+29 Fe+20 Fe+21 Fe+22 Fe+23 Fe+24 Fe+25 Fe+26 hQi

6.0...... 2.932 4.433 *** *** *** *** *** *** *** *** *** *** *** *** 9.144

6.1...... 1.496 2.411 3.616 4.350 *** *** *** *** *** *** *** *** *** *** 10.476

6.2...... 0.749 1.159 1.816 2.160 *** *** *** *** *** *** *** *** *** *** 11.846

6.3...... 0.655 0.616 0.820 0.868 3.304 *** *** *** *** *** *** *** *** *** 13.618

6.4...... 1.161 0.733 0.557 0.364 2.176 4.414 *** *** *** *** *** *** *** *** 15.030

6.5...... 1.870 1.098 0.607 0.204 1.512 3.130 4.797 *** *** *** *** *** *** *** 15.574

6.6...... 2.584 1.512 0.753 0.160 1.047 2.158 3.275 4.863 *** *** *** *** *** *** 15.858

6.7...... 3.303 1.961 0.965 0.194 0.719 1.405 2.041 3.154 4.454 *** *** *** *** *** 16.168

6.8...... 2.987 1.738 0.902 0.390 0.602 0.918 1.201 1.909 2.780 3.849 *** *** *** *** 16.574

6.9...... 3.943 2.488 1.451 0.748 0.679 0.683 0.641 1.005 1.512 2.178 3.101 4.200 *** *** 17.863

7.0...... *** 3.620 2.387 1.494 1.168 0.888 0.560 0.619 0.810 1.137 1.710 2.450 *** *** 19.485

7.1...... *** *** 3.658 2.584 2.027 1.496 0.915 0.703 0.616 0.642 0.913 1.357 *** *** 21.016

7.2...... *** *** *** 3.932 3.162 2.398 1.584 1.130 0.793 0.554 0.556 0.754 3.830 *** 22.223

7.3...... *** *** *** *** 4.397 3.419 2.394 1.720 1.160 0.686 0.459 0.453 2.844 *** 22.935

7.4...... *** *** *** *** *** 4.473 3.249 2.370 1.604 0.912 0.473 0.297 2.139 4.493 23.331

7.5...... *** *** *** *** *** *** 4.076 3.008 2.049 1.165 0.544 0.215 1.597 3.466 23.572

7.6...... *** *** *** *** *** *** 4.874 3.627 2.498 1.434 0.639 0.180 1.173 2.631 23.758

7.7...... *** *** *** *** *** *** *** 4.238 2.940 1.708 0.762 0.184 0.851 1.965 23.947

7.8...... *** *** *** *** *** *** *** 4.840 3.386 2.003 0.919 0.227 0.620 1.444 24.170

7.9...... *** *** *** *** *** *** *** *** 3.850 2.323 1.107 0.312 0.470 1.042 24.432

8.0...... *** *** *** *** *** *** *** *** 4.333 2.676 1.345 0.443 0.387 0.741 24.724

8.1...... *** *** *** *** *** *** *** *** 4.817 3.033 1.595 0.604 0.365 0.533 24.990

8.2...... *** *** *** *** *** *** *** *** *** 3.431 1.874 0.793 0.383 0.386 25.223

8.3...... *** *** *** *** *** *** *** *** *** 3.773 2.145 0.980 0.431 0.287 25.397

8.4...... *** *** *** *** *** *** *** *** *** 4.131 2.415 1.172 0.488 0.219 25.528

8.5...... *** *** *** *** *** *** *** *** *** 4.464 2.673 1.358 0.554 0.171 25.627

8.6...... *** *** *** *** *** *** *** *** *** 4.780 2.917 1.535 0.625 0.135 25.701

8.7...... *** *** *** *** *** *** *** *** *** *** 3.148 1.703 0.694 0.109 25.756

8.8...... *** *** *** *** *** *** *** *** *** *** 3.364 1.856 0.759 0.091 25.797

8.9...... *** *** *** *** *** *** *** *** *** *** 3.559 1.999 0.822 0.076 25.829

9.0...... *** *** *** *** *** *** *** *** *** *** 3.748 2.137 0.883 0.065 25.854
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ionization, and a lower � usually increases the mean charge. However, above 106 K, and at the high-temperature end of a tran-
sition between plateaux, DR can have particularly high resonance energies, and the enhanced suprathermal electron tail for
lower � can increase the overall recombination rate and lead to a decrease in the mean charge.

Returning to a description of the results, in general the equilibrium ionization fractions and mean charge change rapidly
with temperature when the thermal energy is close to the threshold ionization energy of an atomic shell. Thus, the effect of a
kappa distribution is particularly important at temperatures where the ion can lose electrons easily, i.e., not at a closed shell.
Due to shell effects, for various elements and T values we observe more than one local maximum in the ionization fraction
versus q.

At low temperatures, a lower value of � (i.e., a more enhanced suprathermal tail in the electron distribution, with a harder
power law) leads to a dominant ionization fraction at higher q, and a higher mean charge, hQi. While the thermal energy, kBT ,
is less than the ionization threshold energy, the ionization processes take place more frequently due to the enhanced numbers
of high-energy electrons.

Similarly, when the temperature is below the ionization threshold for a deeper shell, at the beginning of a transition from
one closed shell plateau to another, a lower � value again increases the mean charge. These effects of increasing mean charge
have been pointed out in previous studies.

However, sometimes a lower � value can lead to a lower hQi (see Fig. 2), for T > 106 K and at the high-temperature end of a
transition between plateaux. This effect has not been discussed previously (to our knowledge), but it can also be seen from the
graphs of Ko et al. (1996). In addition, we have confirmed that this effect is present in results for Fe by Dzifčáková (1992),
when the mean charge is computed from her tabulated ionization fractions.

Why does a lower � reduce the mean charge only in temperature ranges where hQi is approaching a closed-shell plateau?
A physical explanation is that for ionization to a closed shell, say, the K shell, there is a competition between ionization of the
last L-shell electron, with a relatively low threshold, and recombination to capture an electron into the L shell. Dielectronic
recombination (DR) requires a particularly high energy, because it involves excitation of a K-shell electron. Referring to the
discussion earlier in this section, we are in the ‘‘ low-temperature ’’ régime, where kBT is less than the threshold/resonance
energies in question. Indeed, that is what defines the temperature range of the transition between plateaux: the temperature is
not yet high enough to completely strip the higher shell electrons, let alone the deeper shell electrons. Therefore, for lower �
and a stronger high-energy tail, the DR (and overall recombination) rate increases and hQi is reduced.

Considering hQi as a function of temperature, the approach to a new closed-shell plateau is more gradual for lower �. On
the other hand, at the start of a transition from one plateau to another, a lower � increases hQi because of enhanced ionization;
therefore, the overall effect is that a lower � value leads to broader transitions from one closed-shell plateau to another, as can
be seen in Figures 2–4.

TABLE 3A

Ionization Fractions for Fe as a Function of Temperature for a Kappa Distribution of Electron Velocity, with � ¼ 5: Fe+0–Fe+13

log T Fe+0 Fe+1 Fe+2 Fe+3 Fe+4 Fe+5 Fe+6 Fe+7 Fe+8 Fe+9 Fe+10 Fe+11 Fe+12 Fe+13 hQi

4.0...... 3.305 0.862 0.095 1.241 3.484 *** *** *** *** *** *** *** *** *** 1.920

4.1...... 3.910 1.312 0.108 0.772 2.522 *** *** *** *** *** *** *** *** *** 2.126

4.2...... 4.564 1.818 0.230 0.426 1.690 4.051 *** *** *** *** *** *** *** *** 2.401

4.3...... *** 2.378 0.485 0.241 1.032 2.902 *** *** *** *** *** *** *** *** 2.760

4.4...... *** 2.998 0.882 0.232 0.569 1.957 4.206 *** *** *** *** *** *** *** 3.159

4.5...... *** 3.644 1.367 0.390 0.310 1.228 3.003 *** *** *** *** *** *** *** 3.568

4.6...... *** 4.299 1.906 0.682 0.239 0.713 2.039 4.063 *** *** *** *** *** *** 3.980

4.7...... *** 4.957 2.473 1.060 0.335 0.399 1.323 2.880 4.996 *** *** *** *** *** 4.404

4.8...... *** *** 3.016 1.503 0.554 0.270 0.854 1.974 3.639 *** *** *** *** *** 4.817

4.9...... *** *** 3.628 1.950 0.831 0.275 0.586 1.320 2.578 *** *** *** *** *** 5.192

5.0...... *** *** 4.194 2.408 1.139 0.371 0.459 0.873 1.786 *** *** *** *** *** 5.584

5.1...... *** *** 4.811 2.886 1.477 0.543 0.435 0.597 1.232 4.252 *** *** *** *** 6.014

5.2...... *** *** *** 3.413 1.863 0.786 0.491 0.446 0.853 3.528 *** *** *** *** 6.448

5.3...... *** *** *** 4.005 2.311 1.094 0.611 0.385 0.591 2.916 *** *** *** *** 6.838

5.4...... *** *** *** 4.660 2.818 1.463 0.789 0.391 0.408 2.379 4.461 *** *** *** 7.164

5.5...... *** *** *** *** 3.387 1.891 1.022 0.451 0.280 1.889 3.602 *** *** *** 7.429

5.6...... *** *** *** *** 4.016 2.375 1.304 0.559 0.199 1.441 2.791 4.121 *** *** 7.651

5.7...... *** *** *** *** 4.698 2.908 1.637 0.715 0.164 1.056 2.049 3.089 4.236 *** 7.866

5.8...... *** *** *** *** *** 3.506 2.032 0.932 0.190 0.745 1.400 2.150 3.022 4.639 8.148

5.9...... *** *** *** *** *** 4.207 2.534 1.253 0.321 0.557 0.888 1.347 1.945 3.206 8.658

6.0...... *** *** *** *** *** *** 3.227 1.765 0.646 0.583 0.616 0.785 1.108 2.024 9.586

6.1...... *** *** *** *** *** *** 4.196 2.556 1.252 0.910 0.666 0.559 0.613 1.200 10.794

6.2...... *** *** *** *** *** *** *** 3.652 2.168 1.567 1.063 0.690 0.485 0.747 12.146

6.3...... *** *** *** *** *** *** *** *** 3.470 2.628 1.881 1.256 0.801 0.762 13.959

6.4...... *** *** *** *** *** *** *** *** *** 4.050 3.076 2.215 1.522 1.200 15.218

6.5...... *** *** *** *** *** *** *** *** *** *** 4.383 3.304 2.382 1.795 15.727

6.6...... *** *** *** *** *** *** *** *** *** *** *** 4.393 3.255 2.420 16.024

6.7...... *** *** *** *** *** *** *** *** *** *** *** *** 4.129 3.061 16.353

6.9...... *** *** *** *** *** *** *** *** *** *** *** *** *** 4.579 17.855
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In sum, taking into account a kappa distribution of electrons, which is apparently the norm rather than the exception in
astrophysical plasmas, can substantially change the interpretation of ionization state measurements. For example, a measure-
ment of the mean charge is often used to infer the plasma temperature, and that inference is greatly affected by the value of �,
as shown in Figures 2–4. The � value also strongly affects the interpretation of measurements of dominant ionization states or
ionization ratios (effects on the latter were described in detail by Owocki & Scudder 1983).

3.2. Comparison with Other Calculations

In this section, we discuss how our results compare with those of other authors. To our knowledge, results of ionization frac-
tions for kappa distributions for multiple elements (besides Fe) have not been previously presented; however, we can compare
our results with previous calculations of ionization fractions for Maxwellian distributions (Mazzotta et al. 1998), ionization
fractions for kappa distributions in the case of Fe (Dzifčáková 1992), and mean charges for kappa distributions for C, N, O,
Ne,Mg, Si, and S (Luhn &Hovestadt 1985) and for C, O,Mg, Si, and Fe (Ko et al. 1996).

Some of these results are compared graphically in Figures 3 and 4, for the restricted temperature range of 105 to 108 K. (Note
that the Fe results of Arnaud & Raymond 1992 would be indistinguishable from those of Mazzotta et al. 1998; thus, they are
not shown in Fig. 4a.) We find qualitative agreement in all cases. Quantitative differences are ascribed to different cross section
assumptions; thus, the comparison with other work gives an indication of the uncertainty in any given calculation. In general,
the discrepancies between different calculations are greater for heavier elements.

We have compared our results for the case of Maxwellian distribution with those of Mazzotta et al. (1998). Indeed, we
should expect good agreement because we have used similar ionization and recombination cross sections, with some excep-
tions as noted in x 2. For N through S ions, our hQi values never differ from those derived from ionization fractions of
Mazzotta et al. (1998) by more than 0.2. Differences greater than 0.1 only appear at a few temperature ranges where hQi is
rapidly varying with temperature. For heavier ions the differences are greater, especially where hQi rapidly varies with
temperature, but are never greater than half of a charge unit.

Ionization fractions for Fe have been calculated by Dzifčáková (1992), assuming both Maxwellian and kappa distributions
for the electron velocity. We find major differences between those results and ours, even for a Maxwellian distribution. For
example, when we evaluate the mean charge based on the ionization fractions presented by Dzifčáková (1992), we find that it
differs from ours by�1 for multiple temperature ranges, even in ranges where our results are very similar to those of Mazzotta

TABLE 3B

Ionization Fractions for Fe as a Function of Temperature for a Kappa Distribution of Electron Velocity, with � ¼ 5: Fe+13–Fe+26

logT Fe+13 Fe+14 Fe+15 Fe+16 Fe+17 Fe+18 Fe+29 Fe+20 Fe+21 Fe+22 Fe+23 Fe+24 Fe+25 Fe+26 hQi

5.8...... 4.639 *** *** *** *** *** *** *** *** *** *** *** *** *** 8.148

5.9...... 3.206 4.530 *** *** *** *** *** *** *** *** *** *** *** *** 8.658

6.0...... 2.024 2.987 4.154 4.593 *** *** *** *** *** *** *** *** *** *** 9.586

6.1...... 1.200 1.814 2.603 2.772 4.652 *** *** *** *** *** *** *** *** *** 10.794

6.2...... 0.747 1.025 1.461 1.412 2.981 *** *** *** *** *** *** *** *** *** 12.146

6.3...... 0.762 0.721 0.833 0.606 1.893 3.685 *** *** *** *** *** *** *** *** 13.959

6.4...... 1.200 0.859 0.678 0.299 1.329 2.763 4.202 *** *** *** *** *** *** *** 15.218

6.5...... 1.795 1.172 0.728 0.209 1.004 2.114 3.210 4.695 *** *** *** *** *** *** 15.727

6.6...... 2.420 1.534 0.855 0.203 0.770 1.584 2.368 3.535 4.882 *** *** *** *** *** 16.024

6.7...... 3.061 1.930 1.040 0.257 0.610 1.148 1.639 2.517 3.554 4.800 *** *** *** *** 16.353

6.8...... 3.754 2.396 1.313 0.400 0.546 0.827 1.051 1.658 2.408 3.343 4.489 *** *** *** 16.902

6.9...... 4.579 3.010 1.748 0.704 0.645 0.686 0.665 1.020 1.506 2.153 3.009 4.038 *** *** 17.855

7.0...... *** 3.843 2.414 1.239 0.985 0.799 0.555 0.676 0.918 1.299 1.891 2.647 *** *** 19.111

7.1...... *** 4.943 3.355 2.049 1.603 1.202 0.736 0.634 0.646 0.784 1.131 1.642 4.271 *** 20.446

7.2...... *** *** 4.533 3.095 2.463 1.858 1.188 0.875 0.672 0.574 0.698 0.986 3.230 *** 21.657

7.3...... *** *** *** 4.302 3.494 2.694 1.831 1.318 0.912 0.600 0.511 0.603 2.490 4.876 22.544

7.4...... *** *** *** *** 4.600 3.616 2.572 1.869 1.271 0.757 0.473 0.390 1.944 3.984 23.095

7.5...... *** *** *** *** *** 4.560 3.343 2.459 1.681 0.977 0.511 0.275 1.526 3.246 23.433

7.6...... *** *** *** *** *** *** 4.111 3.056 2.106 1.226 0.592 0.216 1.186 2.609 23.668

7.7...... *** *** *** *** *** *** 4.869 3.650 2.537 1.489 0.700 0.199 0.910 2.065 23.866

7.8...... *** *** *** *** *** *** *** 4.241 2.973 1.769 0.833 0.217 0.693 1.599 24.069

7.9...... *** *** *** *** *** *** *** 4.834 3.417 2.065 0.994 0.270 0.534 1.219 24.293

8.0...... *** *** *** *** *** *** *** *** 3.871 2.381 1.185 0.360 0.430 0.912 24.542

8.1...... *** *** *** *** *** *** *** *** 4.339 2.718 1.407 0.486 0.376 0.676 24.799

8.2...... *** *** *** *** *** *** *** *** 4.812 3.069 1.651 0.638 0.365 0.501 25.038

8.3...... *** *** *** *** *** *** *** *** *** 3.426 1.908 0.810 0.388 0.374 25.242

8.4...... *** *** *** *** *** *** *** *** *** 3.778 2.169 0.989 0.431 0.284 25.403

8.5...... *** *** *** *** *** *** *** *** *** 4.118 2.425 1.169 0.488 0.219 25.528

8.6...... *** *** *** *** *** *** *** *** *** 4.449 2.677 1.347 0.552 0.172 25.623

8.7...... *** *** *** *** *** *** *** *** *** 4.761 2.917 1.518 0.618 0.138 25.695

8.8...... *** *** *** *** *** *** *** *** *** *** 3.142 1.679 0.684 0.113 25.749

8.9...... *** *** *** *** *** *** *** *** *** *** 3.355 1.833 0.749 0.093 25.791

9.0...... *** *** *** *** *** *** *** *** *** *** 3.555 1.977 0.812 0.078 25.824
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Fig. 2.—Mean equilibrium charge, hQi, as a function of electron temperature for (a) nitrogen, (b) oxygen, (c) neon, (d ) magnesium, (e) silicon, ( f ) sulfur,
(g) argon, (h) calcium, (i) iron, and ( j) nickel.



et al. (1998). We attribute this to the use of different ionization and recombination cross sections; for example, Dzifčáková
(1992) used ionization cross sections from Arnaud & Rothenflug (1985), whereas Mazzotta et al. (1998) and our work have
used ionization cross sections from Arnaud & Raymond (1992). Indeed, later work by Dzifčáková (1998) for the case of a
Maxwellian distribution implies mean charges much closer to those of Mazzotta et al. (1998) and our work (the difference is
frequently not visible in Fig. 4a). However, at temperatures above 107 K, the ionization fractions of Dzifčáková (1992, 1998)
imply that the mean charge oscillates with temperature, which was not found byMazzotta et al. (1998) or our own work.

Regarding the effects of a kappa distribution, we have compared our mean charges with those obtained from ionization
fractions presented by Dzifčáková (1992) for Fe and from figures presented by Luhn & Hovestadt (1985) and Ko et al. (1996)
for various elements (Figs. 3 and 4). The effects described in x 3.1 are qualitatively confirmed in each case. There are some
quantitative differences, presumably related to the choice of cross sections. In the case of heavier elements, Si and Fe, in
transition regions our results show less variation with the � value than those of Ko et al. (1996).

4. CONCLUSIONS

The ionization fractions for various elements (N, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) are calculated with consideration of
electron distributions similar to those observed in actual space plasmas, which have pronounced suprathermal, power-law
tails, here modeled by the kappa distribution. A subset of our results can be compared with previous results by other authors,
with minor differences attributed to the use of different cross section formulae. In particular, we have confirmed that our
calculation results in the limit of aMaxwellian distribution are very similar to the previous results ofMazzotta et al. (1998).

  

 

Fig. 2.—Continued
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We found that the effect of the enhanced high-energy tail, as parameterized by the � value, depends sensitively on the plasma
temperature. The most dramatic effect is that at low temperature, a lower � value shifts the ionization balance toward a higher
charge. Otherwise, the � value mainly affects ionization fractions when the thermal energy is close to the ionization threshold
for valence electrons, and the mean charge as a function of temperature undergoes a transition from one closed shell plateau
to another. We point out that at the upper end of such a transition range, a lower � (and stronger high-energy tail) actually
decreases the mean charge, which in retrospect can also be seen in the previous results of Ko et al. (1996) and in mean charges
calculated from the tabulated ionization fractions of Dzifčáková (1992). This results from the � dependence of ionization and
recombination rates; we found that � strongly affects the temperature dependence of ionization or dielectronic recombination
rates for which the corresponding cross sections have sharp energy thresholds or resonance conditions, respectively. The over-
all effect is that a lower � leads to broader transitions in mean charge as a function of temperature, from one closed shell to
another.

Therefore, in many types of astrophysical situations, it is impossible to avoid the effect of an enhanced number of high-
energy electrons on the ionization balance of various elements. This in turn affects the interpretation of a wide variety of astro-
physical observations, where observed ionization fractions or the presence of a given ion serves as a diagnostic of the plasma
temperature. The tables presented here and at ourWeb site2 may be useful in the interpretation of such observations.

  

 

      

Fig. 3.—Comparison among various results for hQi vs.T, for Si

2 The tables are also available at http://www.sc.chula.ac.th/kappa.

 

 

Fig. 4.—Comparison among various results for hQi vs.T, for Fe
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