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Temporary topological trapping and escape of charged particles in a
flux tube as a cause of delay in time asymptotic transport
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[1] The scenario of temporary trapping of magnetic field
lines and their subsequent suppressed diffusive escape from
topological magnetic structures embedded in turbulence has
been offered as a way to understand the persistence of
“dropouts”, or sharp gradients in observed heliospheric
energetic particle intensities. Here a set of numerical
experiments is carried out to show the basic physics of
this process: charged test particles can be temporarily
trapped in flux tubes and then escape due to random
turbulent perturbations in the magnetic field. The overall
effect is a delay in the onset of time-asymptotic transport.
We thus confirm that previous arguments based on field
line transport are also applicable to test particle transport.
Citation: Tooprakai, P., P. Chuychai, J. Minnie, D. Ruffolo, J. W.
Bieber, and W. H. Matthaeus (2007), Temporary topological
trapping and escape of charged particles in a flux tube as a cause
of delay in time asymptotic transport, Geophys. Res. Lett., 34,
L17105, doi:10.1029/2007GL030672.

1. Introduction

[2] Populations of energetic particles observed in the
heliosphere are described frequently using transport equations
that incorporate diffusion in an essential way. The standard
view is that spatial transport of an ensemble of charged
particles involves two types of diffusion — parallel diffusion
along and perpendicular diffusion across the mean local
magnetic field [Jokipii, 1966]. To these additional effects
such as convection, adiabatic expansion and local acceler-
ation may be added to formulate a complete transport theory
[Parker, 1965]. This type of transport theory has been
successful to the degree that it is tempting to regard the
approach as fundamental. There are however problems,
especially for perpendicular transport, the most serious of
which are observational. As an example, heliospheric ener-
getic particle observations seem to require rapid cross field
transport over large expanses of latitude in Ulysses obser-
vations [McKibben et al., 2001]. On the other hand the
persistence of sharp gradients in the observed flux of solar
energetic particles, known as dropouts, seems to set an
upper limit on cross field diffusion that is much lower
than what is needed to account for latitudinal transport
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[Mazur et al., 2000]. Evidently, to account for these
observed features, one must take in to account factors not
ordinarily included in standard diffusive transport theory.
These include time dependence of the heliospheric field
lines at their base [Fisk, 1996; Giacalone et al., 2000] and
topological trapping associated with turbulent flux tube
structure transverse to the large scale heliospheric magnetic
field [Ruffolo et al., 2003; Chuychai et al., 2005, 2007].
Here we further explore the second of these ideas, examin-
ing whether charged particles as well as magnetic field lines
might experience effects associated with the magnetic field
topology of the homogeneous turbulence in which their
transport is initiated.

[3] The usual sequence of events in transport is that
particles (or field lines) initially stream freely, and then begin
to be affected by a random force. Once the random force is
sampled over its correlation length (or time) the process of
random walk, or diffusion, becomes evident. A well known
difficulty arises when the magnetic irregularities responsible
for diffusion have reduced dimensionality [Jokipii et al.,
1993; Jones et al., 1998], so that diffusion might not occur
at all, or perhaps it can only be recovered by defining a
suitably designed ensemble. A further difficulty in arriving
at a time-asymptotic transport limit (diffusive or not) is that
certain subsets of particles with special initial or boundary
conditions might require different times to relax to the
statistical state, meanwhile retaining memory of the initial
state. In this way the pre-diffusive epoch of single particle
transport (ordinarily associated with free streaming) might
persist for widely varying times, for specially prepared
subensembles of particles. Therefore, for example, diffusion
might be a good approximation when averaged over all
energetic particles in the heliosphere, but might not apply to
particles from a particular solar flare as observed at Earth
orbit.

[4] The basic idea explored here originates in a careful
examination of magnetic flux surfaces in so-called two-
component turbulence models. These are a composite of
two ingredients — slab (1D) fluctuations that vary only
along the (uniform) mean magnetic field direction, and two-
dimensional (2D) fluctuations that vary only in the two
perpendicular directions [e.g., Bieber et al., 1994]. The
superposition of the two types of fluctuations is fully three
dimensional (3D) even though the separate components are
of reduced dimensionality. Field line trajectories in large
amplitude fluctuations of this type [Matthaeus et al., 1995]
are well described by diffusion theory, for displacements
greater than a few correlation lengths along the mean field,
provided that averages are taken over an unbiased random
sampling of field lines. However a closer inspection
[Ruffolo et al., 2003] reveals that diffusive transport can
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Table 1. Particle Parameters for By = 5 nT and A\ = 0.02 AU and Simulated/Calculated Arrival Time of the Particles at the First Peak

Time to First Peak®

Energy, MeV [v], ¢ 7, A r, AU o Low B Medium B High B
low E 0.02 0.0065 0.00136 273 x 1070 4.780 2000/1254 240/271 200/183
medium E 0.10 0.0146 0.00305 6.11 x 107° 4.779 600/560 98/121 62/82
high £ 1.00 0.0461 0.00966 1.93 x 1074 4.775 200/177 38/38 20/26

“The first number is the simulated time, and the second number is the calculated time. Units are Mc.

be greatly delayed for a subset of field lines that begins in
the vicinity of O-type neutral points of the 2D fluctuations.
This delay is due to the confining topology of the flux tube
along with suppressed diffusive escape where the 2D field is
strong [Chuychai et al., 2005]. A single 2D flux tube
provides a useful model of both contributions to the field
line trapping near O-type structures that naturally occur at
random locations in 2D turbulence [Chuychai et al., 2007].
If particles injected near O-points experience delays similar
to those of the field lines, that may explain the dropouts in
solar energetic particles.

[s] We propose that charged particles can experience
delays in perpendicular transport associated with the initial
magnetic topology into which they are injected. To examine
this conjecture, we will examine test particle experiments in
which the O-type structure of the transverse fluctuating
magnetic field is represented by a single two-dimensional
magnetic flux tube with a Gaussian profile, sufficiently
small that it does not affect other plasma properties. The
rest of the system is the very simple case of a uniform DC
magnetic field, on which is superposed a statistically
uniform field of magnetostatic 1D slab turbulence that also
permeates the flux tube. The results confirm our basic
conjecture that temporary trapping leads to a delay in
perpendicular transport and the formation of steep perpen-
dicular gradients in an initially localized particle distribu-
tion. Trapping is more effective for stronger flux tubes and
lower energy test particles.

2. Model and Methods
2.1. Equation of Motion

[6] To evaluate particle trajectories, we numerically solve
the Newton-Lorentz force equation in a set of units for
which all quantities as scaled to the mean magnetic field
(By), the speed of light (c), the slab turbulence coherence
length (), and the time scale 7o = Mc. The equations of
motion become

dv’
W:a(v/xB/) (1)

where o = (¢ByTo)/(ymg) and V), B, and ¢ are normalized
quantities.

2.2. Magnetic Field Model

[7] The magnetic field consists of a Gaussian 2D flux
tube, slab turbulence, and a uniform field Byz. For the 2D
flux tube, the potential function a(x, y) is chosen as a
Gaussian function:

alr) = dyexo |- 1. )

where A, is the central maximum value, o determines the
thickness of the Gaussian, and distance r is measured from
the axis of the flux tube. Therefore, from B =V x A, we
can write

b2(r) =40, 0

o2

where 6 is the unit vector associated with the angular
coordinate in a cylindrical coordinate system defined by the
flux tube axis.

[s] Without the slab field, the field line trajectory in this
model, Byz + b*(x, y), has a helical orbit along a cylinder
surface of constant a(x, y) with a constant angular frequency
K = a(ro)/(Boo?) = (b*2(ry)/Bo)/ro, Where rq is the starting
radius. For the slab turbulence we choose the spectrum

Sl Sla C
ch;fch(kz) = Pj}{ b(kz) = 5/6° (4)

[1+ (kX))

where )\ is the coherence length and C is constant.

[9] For the numerical simulations, we set the box length
in the z direction as 10,000 A\ and the number of grid points
is N, = 4,194,304. We are particularly interested in small
flux ropes surrounding O-points in 2D turbulence, which
are permeated by homogeneous mean and slab fields, so we
keep constant the mean field (By), all parameters of the slab
turbulence, and the width of the 2D island (6by,,,/By = 0.5
and o = 0.5\, where By = 5 nT and A = 0.02 AU). These
parameters roughly represent conditions in interplanetary
space near Earth. In different numerical experiments we
vary the strength of the 2D field - which indeed does vary in
interplanetary space - by changing 535", For these simu-
lations, we define b55*/By = 0.0, 0.5, 1.0, and 1.58 for pure
slab, low B, medium B, and high B; which is equivalent to
(DS /8bgiap)* = 0.0, 1.0, 4.0, and 10.0, respectively.

2.3. Particle Properties

[10] We focus on particles at three different energies as
presented in Table 1. Here r; = ymgv/(|q|Bo), and the test
particles are designed to represent protons. Given our choice
of By (see Section 2.2), these values of the Larmor radius r;
roughly match the maximum gyroradius of such particles in
interplanetary space near Earth. The energies are referred to
below as high energy (1 MeV), medium energy (0.1 MeV)
and low energy (20 keV).

2.4. Simulations

[11] At the initial time step, 5,000 particles are placed at
7o = 0.1X = 0.20, which is near the center of the Gaussian
flux tube. The initial particle velocity is uniformly distrib-
uted in direction (isotropic). Because of the symmetry of the
slab turbulence, the particle positions are initially at random
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Figure 1. [llustration of 50 magnetic field lines (light red) and the trajectories of 50 particles (dark blue) with the same
initial positions that start at z = 0, » = 0.1\ in a mean field + Gaussian 2D field + slab turbulence. Here the parameters of the
2D field are the same as in the high B case and all particles have low E (for details see Section 2.2 and Table 1). In the main
plot, while trapped, the field lines map out regular flux surfaces of the Gaussian flux tube until their escape. Note that some
particles undergo resonant pitch angle scattering and move downward to z < 0. In the lower inset, individual guiding center
motion is evident. In the inset showing the most magnified view, the gyration of individual particles is seen.

z positions for estimation of ensemble average statistics of
perpendicular displacement.

[12] Particle trajectories are computed in time ¢ by a
fourth-order Runge-Kutta method with adaptive time step-
ping regulated by a fifth-order error estimate step.

[13] We calculate the average of the squared perpendic-
ular displacement (Ar?) = (Ax* + Ay?), where Ax =x — X
and Ay =y — yy, and a running diffusion coefficient of the
particles, given as & = (Ax* + Ay?)/(47) at time .

3. Simulation Results

[14] Figure 1 shows sample particle trajectories for low
energy and high flux tube field strength (low £ and high B,
showing particles and field lines starting at z = 0 for clarity
of presentation).

[15] At the coarsest spatial resolution one sees a collection
of guiding centers that are initially confined to the flux
surfaces of the 2D flux tube, but gradually escape (towards
the top of Figure 1.) At finer spatial scales (lower inset) the
individual particle trajectories become apparent, and one sees
that they follow slightly different field lines. At the finest
resolution (upper inset) the gyro-orbits become apparent and
are the dominant feature. It is apparent that the magnetic field,
and therefore the particle orbits, exhibit a multi-scale structure.

[16] Figure 2 shows mean square displacements vs. time
for various particle energies and flux tube fields (top plots).
These displacements, measured perpendicular to Bz, have a
more complex behavior with the flux tube present. In the
bottom plots, particle transport with varying 2D field and
particle energy is illustrated in terms of the time-dependent
running diffusion coefficient, . It is clear that x does not

monotonically approach a time asymptotic form of the
transport. For all cases that include a 2D flux tube, there
is a period of time in which the rate of transport is
suppressed.

[17] The left plots of Figure 2 show how low energy
particles behave in flux tubes of varying strength, with other
parameters fixed. The pure slab case is considered as well,
and is the limit of a zero strength 2D flux tube. The time-
varying features introduced by the 2D flux tubes are more
prominent as the flux tube field strength increases. Based on
analyses such as these, we identify four regimes of particle
transport in these numerical experiments (Figure 2, top
right), seen most clearly in the cases of lower energy and
higher flux tube magnetic field:

[18] I Streaming regime ((Ar?) ox £): the particles orbit
around the field lines which are mainly confined to the 2D
flux tube surface. The effects of the slab turbulence on these
trajectories is small at this stage. This persists until the first
peak in the diffusion coefficient plot (Figure 2, bottom left),
estimated by ¢ = s/v, where

B } (5)

N ) 1 —+ |:b2D(r0)
corresponds to a half cycle of the helical field line trajectory
and v is the isotropic speed (|v|/v/3) of the particles, as
shown in Table 1. This calculated time of the first peak
agrees reasonably well with the simulation results.

[19] II. Temporary trapping regime and suppressed dif-
fusion ((Ar?) o from 7 to ¢'): The particles have filled the
flux tube surface and are temporarily trapped on it. The
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Figure 2. (top) Mean squared perpendicular displacement (Ar?) vs. time ¢ for various cases. (bottom) Running
perpendicular diffusion coefficient x = (Ar2>/(4t) vs. time ¢ for various cases. There is more trapping for lower energy

particles and for stronger 2D flux tubes.

gyrocenters follow an approximately helical path, and the
radial coordinates of the particles begin to increase slowly.
This broadening briefly reaches a slow diffusive rate of
transport as the gyrocenters follow field lines which them-
selves are experiencing a suppressed diffusive escape from
the flux tube [Chuychai et al., 2005].

[20] I Escape region ((Ar?) from ¢' to *): As the
particle population escapes the 2D flux tube, the transport
is increasingly dominated by the stronger (unsuppressed)
effects of the slab turbulence. This corresponds to a super-
diffusive regime (equivalent to a second free streaming
regime) in which the transition to this higher rate of
transport is accomplished for the entire population.

[21] IV. Asymptotic transport: Subdiffusion regime
((Ar?) o t2): After escape, the particles experience the
full effect of the exterior turbulence. In many cases this
would be an asymptotic diffusive regime. However for the
present simplified model, the displacements become sub-
diffusive in the exterior pure slab turbulence because of the
parallel scattering [see Qin et al., 2002a, 2002b; Webb et al.,
2006]. This final regime of transport begins at the second
peak corresponding to the estimated parallel scattering time.

[22] Figure 2 includes reference curves of transport in
pure slab turbulence (particle energy as labelled). For the
pure slab cases we can see only two transport regimes, free-
streaming at early times, followed by time-asymptotic
subdiffusive transport. At very early times, free streaming
within a 2D flux tube can be more rapid than in the pure
slab case, causing the mean square displacement for the flux
tube cases to sometimes lie above the slab case. However
the temporary trapping or confinement within the flux tubes

has no analog for the pure slab case, and, in this regime of
time scales, particles confined by 2D flux tubes have
systematically lower values of mean square perpendicular
displacement.

3.1. Trapping Time

[23] Temporarily confined particles require a longer time
to reach a specified mean square displacement than do the
corresponding pure slab experiments. We define a trapping
time as the difference in time required to attain a specified
perpendicular displacement.

[24] Suppose that f,(f) and f(#) are the mean square
displacements for the Gaussian flux tube and pure slab
cases respectively. It is clear that f, must be evaluated at a
later time ¢ + ¢, in order to attain a displacement equal to
Js(?) (see f; and f, in the top plots of Figure 2). We define
the trapping time t,,, by fo(t + tyqp) = fi(f), where t,,,
is uniquely defined because both functions increase mono-
tonically. We find a fairly stable value in most of our runs
after the epoch of escape begins. Most of the delay in
transport in the cases with Gaussian flux tubes is experi-
enced during the period of trapping and suppressed diffu-
sive escape. Here we choose the high B case to find #,,,,
shown in Table 2.

Table 2. Trapping Times

Low E Medium £ High E
Energy, MeV 0.02 0.10 1.00
Liraps NC 5 x 10* 9.5 x 10° 3 x 10°
byraps NV 326 139 138
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Figure 3. Example of how a 2D flux tube (the high B
case) confines particles and leads to steep spatial gradients
for an extended time (black histogram), in comparison with
a case with no flux tube (pure slab; gray histogram).
Distances are in units of A\, and r is the distance from the
axis of the flux tube, which has a Gaussian potential
function with o = 0.5\. Histograms show counts per 0.05 A
bin. The 5000 particles were started at t = 0 from random
locations within » = 0.1\ from the flux tube axis, and the
histograms and scatter plots (insets) indicate their locations
at t = 1000Mc. The sharp gradients for the high B case
correspond to dropout features in energetic ions and
electrons from impulsive solar flares as observed near Earth.

3.2. Confinement and Steep Gradients

[25] To demonstrate the temporary trapping of particles
in another way, Figure 3 shows the spatial distribution of
5000 particles at ¢+ = 1000\/c, where the particles started
at random locations within » = 0.1\ from the flux tube axis
at £ = 0. In the high B case, particles are clearly inhibited
from leaving the flux rope (with o = 0.5) in comparison to
the pure slab case. Thus the mechanism of field line
trapping and confinement in small 2D flux tube structures,
proposed as a basis for explaining dropouts [Ruffolo et al.,
2003; Chuychai et al., 2005, 2007], is shown to also yield
particle confinement and steep gradients.

4. Discussion

[26] Usually one expects that charged test particles
moving in a uniform mean magnetic field with random
perturbations will, after moving a few turbulence correlation
lengths, experience spatial diffusion, or some other time-
asymptotic transport (such as compound diffusion, or sub-
diffusion.) The present numerical results show that when
additional, modest perturbations in the form of closed two-
dimensional flux tubes are present, the time for some
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particles to attain the time-asymptotic regime of spatial
transport can be greatly increased. This is due to temporary
trapping in the transverse magnetic topology imposed by
flux tubes. Particles of lower energy that are deeply
embedded in stronger flux tubes of this type are expected
to most prominently display trapping, suppressed escape,
and the associated delays in perpendicular transport.

[27] The effect described is the direct analog for particles
of the topological trapping and suppressed diffusive escape
of magnetic field lines from the vicinity of O-type neutral
points in the transverse, 2D fluctuation fields [Ruffolo et al.,
2003; Chuychai et al., 2005, 2007].

[28] The present ideas may be relevant to heliospheric
phenomena such as dropouts that appear to require weaker
or absent diffusion. Here we see that the trapping delays the
onset of asymptotic transport, but does not prevent it, and
that during this time, sharp gradients can persist, possibly
appearing over a great span of heliocentric distance. To
assess this idea more quantitatively in the context of
dropouts, a more detailed model will have to be developed,
including radial expansion, flows, and fully three dimen-
sional effects of the inhomogeneous magnetic field in the
heliosphere.
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