
The Astrophysical Journal, 762:66 (7pp), 2013 January 1 doi:10.1088/0004-637X/762/1/66
C© 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

MODEL OF THE FIELD LINE RANDOM WALK EVOLUTION AND APPROACH
TO ASYMPTOTIC DIFFUSION IN MAGNETIC TURBULENCE

A. P. Snodin1,2, D. Ruffolo1,2, and W. H. Matthaeus3
1 Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; andrew.snodin@gmail.com, david.ruf@mahidol.ac.th

2 Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand
3 Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA; whm@udel.edu

Received 2012 September 8; accepted 2012 November 12; published 2012 December 14

ABSTRACT

The turbulent random walk of magnetic field lines plays an important role in the transport of plasmas and energetic
particles in a wide variety of astrophysical situations, but most theoretical work has concentrated on determination
of the asymptotic field line diffusion coefficient. Here we consider the evolution with distance of the field line
random walk using a general ordinary differential equation (ODE), which for most cases of interest in astrophysics
describes a transition from free streaming to asymptotic diffusion. By challenging theories of asymptotic diffusion
to also describe the evolution, one gains insight on how accurately they describe the random walk process.
Previous theoretical work has effectively involved closure of the ODE, often by assuming Corrsin’s hypothesis
and a Gaussian displacement distribution. Approaches that use quasilinear theory and prescribe the mean squared
displacement 〈Δx2〉 according to free streaming (random ballistic decorrelation, RBD) or asymptotic diffusion
(diffusive decorrelation, DD) can match computer simulation results, but only over specific parameter ranges, with
no obvious “marker” of the range of validity. Here we make use of a unified description in which the ODE determines
〈Δx2〉 self-consistently, providing a natural transition between the assumptions of RBD and DD. We find that the
minimum kurtosis of the displacement distribution provides a good indicator of whether the self-consistent ODE is
applicable, i.e., inaccuracy of the self-consistent ODE is associated with non-Gaussian displacement distributions.
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1. INTRODUCTION

Magnetic fields are ubiquitous in tenuous astrophysical plas-
mas, and because of their large distance scales, flows of such
plasmas often exhibit magnetic turbulence. A magnetic field
line guides the motion of charged particles, be they compo-
nents of the bulk plasma or high energy particles, so a wide
variety of transport phenomena depend on the field line trajec-
tories. Therefore, numerous studies have examined the nature
of the field line random walk (FLRW; e.g., Barghouty & Jokipii
1996; Zimbardo & Veltri 1995), especially with regard to asymp-
totic diffusion coefficients after long distances (for reviews, see
Isichenko 1991a, 1991b; Shalchi 2009).

In the present work we address the evolution of the FLRW as
a function of distance z along a large-scale magnetic field, an
issue that has received relatively less attention. For most cases
of astrophysical interest there is a transition from free-streaming
(ballistic) trajectories at low z to approaching asymptotic diffu-
sion at high z, although when the FLRW is dominated by nearly
two-dimensional (2D) fluctuations, which mainly vary in the
x- and y-directions, computer simulations have exhibited subd-
iffusion over certain distance scales (Ruffolo et al. 2008; Ghilea
et al. 2011). Similar behaviors have been reported from simu-
lations of the mathematically analogous situation of trajectories
of tracers in 2D hydrodynamic turbulence (Ottaviani 1992).

In addition to its intrinsic interest, in the present work
we show that the evolution of the FLRW can shed light
on how well theories of asymptotic diffusion capture the
correct behavior of the field line displacement distribution. The
evolution of the mean squared displacement of turbulent field
lines or analogous systems has been described by a second-
order ordinary differential equation (ODE), and we describe

how the FLRW theories in the literature correspond to various
types of closure of the ODE, including self-closure that retains
the form of an ODE (Saffman 1962; Taylor & McNamara 1971;
Lerche 1973; Wang et al. 1995; Shalchi & Kourakis 2007),
and integrable closures such as diffusive decorrelation (DD;
Salu & Montgomery 1977; Matthaeus et al. 1995) and random
ballistic decorrelation (RBD; Ghilea et al. 2011). The latter
authors found that theories based on either DD or RBD could
provide an accurate match to direct computer simulation results
for the asymptotic diffusion coefficient, depending on the range
of physical parameters. Indeed, the field lines might be expected
to undergo a transition from RBD (free streaming) to DD
(asymptotic diffusion) behavior as a function of distance, z. We
find that in some cases the ODE matches the simulation results
for the FLRW evolution quite well, and better than RBD or DD
theories. In other cases, where such an ODE yields a running
diffusion coefficient that deviates substantially (by �30%) from
simulation results, we typically find a minimum kurtosis K
below 2.8. Therefore, although it is more complicated than
most previous descriptions of asymptotic field line diffusion,
this ODE provides a unified description of the FLRW evolution,
and the kurtosis of the displacement distribution as determined
by computer simulations provides an indicator of its accuracy.

2. ORDINARY DIFFERENTIAL EQUATION FOR
FIELD LINE RANDOM WALK

2.1. General Form

The problem of the FLRW is to statistically summarize the
results of tracing magnetic field lines through space. We consider
a magnetic field B = B0 + b for a constant large-scale field
B0 = B0ẑ and a fluctuating field b of mean zero. In the present
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work, we consider the case of transverse fluctuations b ⊥ ẑ, in
which case the field line never backtracks as a function of z and
is described by x(z) and y(z) as given by

dx

dz
= bx(x, y, z)

B0

dy

dz
= by(x, y, z)

B0
. (1)

(This could easily be generalized to allow non-transverse fluc-
tuations by using three equations for x(τ ), y(τ ), and z(τ ), where
τ parameterizes the location along the field line.) Considering
field line displacements Δx ≡ x(z) − x(0) and (equivalently)
Δy, the problem of the FLRW is to then find the mean squared
displacements (variances)

Vx(z) ≡ 〈(Δx)2〉 Vy(z) ≡ 〈(Δy)2〉 (2)

and related quantities as a function of the parallel displacement
z, where we average over an ensemble of fluctuations b. We
typically define the ensemble as a set of fluctuations with the
same correlation function (i.e., the same power spectrum). In
order to concentrate on the process of FLRW evolution, here we
consider the case of axisymmetric fluctuations in which bx(x)
and by(x) are statistically identical (for treatments of asymptotic
diffusion for non-axisymmetric fluctuations, see Pommois et al.
1999; Ruffolo et al. 2006; Weinhorst et al. 2008) and use
V = Vx = Vy .

Next, we can define a running diffusion coefficient as

D(z) ≡ 1

2

dV

dz
. (3)

In a limit of large z, for cases of astrophysical interest D typically
approaches a constant asymptotic value, so that V = 〈Δx2〉 ≈
2Dz. (Note that some other studies define D(z) = V/(2z),
which gives the same value for asymptotic diffusion but may be
different at general z.)

By integrating Equation (1), we obtain

Δx = x(z) − x(0) = 1

B0

∫ z

0
bx[x⊥(z′), z′]dz′ (4)

V = 〈Δx2〉 = 1

B2
0

∫ z

0

∫ z

0
〈bx[x⊥(z′), z′]bx[x⊥(z′′), z′′]〉dz′dz′′,

(5)

where x⊥ = (x, y) as a function of z is a (random) magnetic
field line trajectory. Then it follows that

D = 1

B2
0

∫ z

0
〈bx(0, 0)bx[�x′⊥(Δz′), Δz′]〉dΔz′, (6)

where we assume the fluctuations to be statistically homoge-
neous and �x′⊥(Δz′) ≡ x⊥(z′′) − x⊥(z′) (for an illustration, see
Figure 3 of Ruffolo et al. 2004). In the limit z → ∞ this yields
the well-known Taylor–Green–Kubo expression for the asymp-
totic diffusion coefficient (Taylor 1922; Green 1951; Kubo
1957). Note that 〈bx(0, 0)bx[�x′⊥(Δz′), Δz′]〉 is a Lagrangian
correlation, for which we will sometimes use the shorthand
〈bxb

′
x〉. The above relations can be expressed as a second-order

ODE,
d2V

dz2
= 2

B2
0

〈bx(0, 0)bx[�x′⊥(z), z]〉, (7)

or as an equivalent system of two first-order ODEs,

dV

dz
= 2D (8)

dD

dz
= 1

B2
0

〈bx(0, 0)bx[�x′⊥(z), z]〉. (9)

The appropriate initial conditions are V (0) = D(0) = 0. Sim-
ilar general ODEs have been presented by Saffman (1962) and
Taylor & McNamara (1971) for situations that are mathemat-
ically analogous to the FLRW. In this form, the ODE is exact
and applies to transverse fluctuations in general. The ODE is
usually non-trivial because the right-hand side depends on the
statistical behavior of the displacement �x′⊥.

However, in the special case of slab fluctuations, where b
depends only on z, the Lagrangian correlation is simply the
Eulerian correlation function Rxx(z) and the ODE is exactly
integrable. The running diffusion coefficient is given by

D(z) = 1

B2
0

∫ z

0
Rxx(z′)dz′. (slab) (10)

In the limit z → ∞ we recover the quasilinear expression for
the asymptotic diffusion coefficient as determined by Jokipii &
Parker (1968),

D(∞) = 〈b2
x〉

B2
0

�c, (slab) (11)

where �c is the correlation length of the slab fluctuations.
In the usual case where b depends on x and/or y, in order

to develop an analytic theory of the FLRW from the ODE,
a closure relation is needed to approximate the Lagrangian
correlation in terms of either known quantities or V (z) itself.
Previous work has often used a closure in terms of Corrsin’s
independence hypothesis, as described below. (For cases where
trapping along flux surfaces is important, an alternative to
Corrsin’s hypothesis is the decorrelation trajectory method (e.g.,
Vlad et al. 1998; Neuer & Spatschek 2006; Negrea et al.
2007). An alternative approach, based on the direct interaction
approximation (Kraichnan 1959), has been shown by Vanden
Eijnden & Balescu (1995) to be consistent with the present
approach.) Furthermore, almost all work based on Corrsin’s
hypothesis has assumed a Gaussian displacement distribution
(e.g., Salu & Montgomery 1977). A notable exception is Shalchi
et al. (2009), who considered deviations from Gaussian field line
displacements via a kappa distribution.

2.2. Closure Assuming Corrsin’s Hypothesis
and Gaussian Displacements

Using Corrsin’s hypothesis (Corrsin 1959), the Lagrangian
correlation can be approximated in terms of the Eulerian
correlation function Rxx(x⊥, z) of the magnetic fluctuation and
the probability P (x⊥|z) that a field line has a displacement x⊥
after a distance z:

〈bx(0, 0)bx[�x′⊥(z), z]〉 =
∫

Rxx(x⊥, z)P (x⊥|z)dx⊥. (12)

It is useful to express the correlation function Rxx(x⊥, z) in
terms of its Fourier transform, the power spectrum Pxx(k):

Rxx(x⊥, z) = 1

(2π )3/2

∫
Pxx(k)e−ikxxe−ikyye−ikzzdk. (13)
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Then

〈bx(0, 0)bx[�x′⊥(z), z]〉
= 1

(2π )3/2

∫ ∫
Pxx(k)e−ikxxe−ikyye−ikzzP (x⊥|z)dx⊥dk.

(14)

Another common assumption is that the displacement distribu-
tion P (x⊥|z) is Gaussian in x and y, say, with standard deviation
σ (z). Then we perform the integration over x⊥ to obtain

〈bx(0, 0)bx[�x′⊥(z), z]〉 = 1

(2π )3/2

∫
Pxx(k)e− 1

2 k2
⊥σ 2(z)e−ikzzdk,

(15)

where k2
⊥ = k2

x + k2
y . Then the ODE becomes

d2V

dz2
= 2

dD

dz
= 2

B2
0

1

(2π )3/2

∫
Pxx(k)e− 1

2 k2
⊥σ 2(z)e−ikzzdk.

(16)
In the next step, previous work has approximated this
Lagrangian correlation in terms of either known quantities or
V (z) itself, which serves as closure for the ODE.

2.2.1. Integrable Closures

We refer to a closure that approximates the Lagrangian
correlation in terms of known quantities as an integral closure,
because then we can determine D(z) by integrating Equation (9)
and V (z) by integrating 2D(z). A large number of theories in the
literature are equivalent to integral closures, even if they were
not expressed in terms of this ODE.

For an analogous problem, Salu & Montgomery (1977) used
what we call DD, setting σ (z) as appropriate for asymptotic
diffusion. This approach was applied to the FLRW by Matthaeus
et al. (1995). In our present notation, this assumption uses

σ 2 = 2D(∞)z. (DD) (17)

Then Equation (16) can be integrated over z from 0 to ∞
to obtain an expression for D(∞) that depends on D(∞)
itself, that is, an implicit equation for the asymptotic diffusion
coefficient. After solving that, D(∞) could be used to integrate
Equation (16) to any z, to determine D(z). Note that this
approach takes the behavior for long z (asymptotic diffusion) to
apply to all z.

Ghilea et al. (2011) introduced the assumption of RBD, in
which the field lines spread ballistically in random directions:

σ 2 = 〈b2
x〉

B2
0

z2. (RBD) (18)

Then Equation (16) can be integrated to determine D(z), and in
particular Ghilea et al. (2011) determined an explicit expression
for the asymptotic diffusion coefficient. RBD theories assume
that the Lagrangian correlation is significantly non-zero only at
short distances z, where the field line trajectories are roughly
ballistic.

That work showed that for different parameter ranges, either
DD or RBD provided a closer match to direct computer simula-
tion results, for reasons that could be understood physically but
with no obvious “markers” of the range of validity. For nearly
2D turbulence, neither model worked well, which was attributed

to effects of trapping along flux surfaces. While it is useful and
interesting to know whether and why a given random walk prob-
lem is dominated by DD or RBD, our motivation for the present
work was to find a unified approach that could naturally model
the transition from short-z (RBD) to long-z (DD) behavior. We
therefore turned to self-closure of the ODE, as described below.

2.2.2. ODE Self-closure

We refer to a closure that expresses the Lagrangian correlation
in terms of the variance V as a self-closure, which still yields a
second-order ODE. As suggested by Saffman (1962) and Taylor
& McNamara (1971) and studied further by Lundgren & Pointin
(1976), such a closure can self-consistently replace σ 2(z) by
V (z) to yield (in our notation)

d2V

dz2
= 2

B2
0

1

(2π )3/2

∫
Pxx(k)e− 1

2 k2
⊥V (z)e−ikzzdk, (19)

or as an equivalent system of two first-order ODEs,

dV

dz
= 2D (20)

dD

dz
= 1

B2
0

1

(2π )3/2

∫
Pxx(k)e− 1

2 k2
⊥V (z)e−ikzzdk. (21)

Similar derivations were performed more recently by Wang
et al. (1995) and Shalchi & Kourakis (2007). In general, the
above equation does not have an analytic solution. If Pxx(k) ∝
Pxx(k⊥)δ(kz) (i.e., for a purely 2D fluctuating field b that does
not depend on z), then one can obtain an asymptotic solution for
D via a first integral (e.g., Taylor & McNamara 1971) that is

√
2

times bigger than D found via the DD closure of Equation (17).
However, in this work we want to obtain V and D as a function
of z for a more general power spectrum. We do so by solving
Equation (19) numerically as the system of two first-order ODEs
(Equations (20) and (21)), evaluating the Fourier integral over k
with the QUADPACK library (Piessens et al. 1983) with initial
values V (0) = 0 and D(0) = 0 to be consistent with ballistic
field line trajectories (V ∝ z2) at low z.

In the remainder of this work, we will compare results from
the ODE in Equation (19) with results from other theories and
computer simulations.

3. COMPARISON WITH COMPUTER SIMULATIONS

To compare with computer simulations, we need to specify
the form of the fluctuation b and its power spectrum. We
employ a two-component 2D+slab model of transverse magnetic
fluctuations in which the power spectrum is a sum of a 2D
power spectrum, depending on kx and ky, and a slab power
spectrum depending on kz. This model is convenient for direct
computer simulations because generating a realization can be
done by performing only one 2D inverse fast Fourier transform
(FFT) and two one-dimensional inverse FFTs, yet the resulting
field b varies along all three dimensions. The two-component
model was motivated by observations of interplanetary magnetic
fluctuations, indicating quasi-slab and quasi-2D components
(Matthaeus et al. 1990; Weygand et al. 2009), which can
be modeled using a ratio of slab:2D fluctuation energies of
approximately 20:80 (Bieber et al. 1994, 1996). This model
has provided a useful description of the parallel transport of
particles in the inner heliosphere (Bieber et al. 1994). By using
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this 2D+slab model, we can directly compare our new results
from the ODE with self-closure (Equation (19)) with results
from the DD (Matthaeus et al. 1995) and RBD (Ghilea et al.
2011) approaches. (Note that for RBD we use Equation (18) for
the total 2D+slab fluctuation field, corresponding to the RBD/
2D+slab model of Ghilea et al. 2011.)

Specifically, for the slab fluctuations we use

P slab
xx (kz) = P slab

yy (kz) = Cslab

[1 + (kzλ)2]5/6
, (22)

where λ is the bendover length scale of the slab turbulence
and Cslab is a normalization constant that is determined by the
desired fraction of energy in the slab fluctuations. For the 2D
fluctuations, the components bx and by are related through a
potential function a(x, y) by b2D = ∇ × [a(x, y)ẑ]. In this work
we assume that the 2D fluctuations are axisymmetric, so in
k-space we can write the magnetic power spectra as

P 2D
xx = k2

yA(k⊥) P 2D
yy = k2

xA(k⊥), (23)

where A(k⊥) is the axisymmetric power spectrum of the poten-
tial function a(x, y). We use

A(k⊥) = C2D

[1 + (k⊥λ⊥)2]7/3
, (24)

where λ⊥ is the perpendicular bendover scale and C2D is a
normalization constant used to set the desired fraction of 2D
energy.

We perform the direct computer simulations for 2D+slab
magnetic fluctuations, which are very similar to those of Ghilea
et al. (2011), using a computer code based on that presented by
Dalena et al. (2012). Gaussian magnetic fields are generated on
grids using inverse FFT methods to obtain the desired power
spectra as above. We generate slab fields on a periodic box of
length Lz = 400,000 on Nz = 224 grid points and 2D fields
on an Nx × Ny = 4096 × 4096 grid with Lx = Ly = 100.
Then for a given set of turbulence parameters, as described
below, we follow the trajectories of 1000 field lines starting at
different locations in the box. One slab realization and 10 field
lines are used per 2D realization (100 realizations in total).
We solve the equations for the field line numerically using
the fifth-order method of Cash & Karp (1990), which allows
for an adaptive step size via the error estimate of the fourth-
order solution. In the parallel direction z, we only determine
ensemble average quantities over distances up to a fraction of
a percent of the box length, to avoid periodicity effects for the
slab component (see Ghilea et al. 2011). We output the mean
squared displacement 〈Δx2〉 and also 〈Δx4〉 as a function of z,
from which we can calculate the running diffusion coefficient
D(z) = (1/2)(d〈Δx2〉/dz) and additionally the kurtosis

K ≡ 〈Δx4〉
〈Δx2〉2

(25)

as a function of z. We should expect K = 3 if the displacement
distribution P (x⊥|z) is Gaussian, and any significant deviation
from 3 implies non-Gaussian statistics. We report the kurtosis as
a function of z for both the x- and y-distributions, and we can use
their difference (which should be zero given our assumption of
axisymmetry) to estimate the uncertainty in the determination
of K. The parameters that we can vary in the 2D+slab model
simulations are

r ≡ b

B0

λ

λ⊥
(26)

and fs = (bslab/b)2. The parameter r is essentially a scaled
turbulence level, and fs tells us the fraction of the turbulent
energy in the slab field. Numerical results shown here are for
perpendicular distances in units of λ⊥ and parallel distances in
units of λ. Note that in the case of pure slab turbulence there
is no concept of λ⊥, so r does not make sense. In that case
one would instead vary b/B0 and obtain distances in units of
λ. For the results shown here, we have set λ = λ⊥ = 1 in all
calculations.

Although r in Equation (26) looks like a Kubo number for the
FLRW (such as that of Isichenko 1991a), it is conceptually
different (Ghilea et al. 2011). The usual definition of the
Kubo number takes into account the correlation length scales
associated with the total field parallel and perpendicular to
the mean magnetic field. Such a definition is appropriate for
a single turbulence component, but with 2D+slab turbulence we
have two distinct components: the 2D component, which has
an infinite perpendicular correlation length (as it is independent
of z), and the slab component, which has an infinite parallel
correlation length (as it is independent of x and y). Therefore,
the Kubo number cannot be determined for 2D+slab turbulence.
Also, for understanding different regimes, r behaves differently
than the Kubo number. For the one-component turbulence of
Isichenko (1991a), a low Kubo number implies quasilinear
behavior, whereas in 2D+slab, this corresponds to r � 1.

As a first test, we consider the FLRW evolution for pure
slab fluctuations with b/B0 = 1. In this case, the ODE is
exactly integrable and reduces to Equation (10), so we expect
nearly perfect agreement between the ODE and simulation
results (as previously obtained by Shalchi & Qin 2010). Such
agreement is demonstrated in Figure 1 and gives us confidence in
our methodology. The Lagrangian correlation 〈bxb

′
x〉 shown in

Figure 1(b) is simply the Eulerian correlation associated with our
input power spectrum, and this is integrated over z to yield the
running diffusion coefficient Dx in Figure 1(a). The horizontal
dashed line in Figure 1(a) is the prediction of quasilinear theory
for the asymptotic field line diffusion coefficient (Jokipii &
Parker 1968) of Dx(∞) = 0.384, which matches very closely
with the simulation result of 0.385. Note that the kurtosis K
determined by the simulation shown in Figure 1(c) is equal
to 3, within the uncertainty, which is consistent with Gaussian
distributions for the field line displacement at all z. Note that in
this example and those that follow, we only show the part of the
result over which the computer simulation quantities undergo
significant evolution; at later z, D is diffusive in all cases and
does not change significantly from the last shown value (K does
not change much either). We provide asymptotic values for D
in the text, which are obtained at z at least 10 times beyond the
last plotted values. We use a very large simulation box because
we can sometimes see the start of periodicity effects due to the
slab turbulence at z not much larger than the range of z where
asymptotic values are determined.

Next, we show an example for 2D+slab fluctuations with
r = 1 and a slab fraction fs = 0.8 (see Figure 2). This is a case
where Ghilea et al. (2011) found that the asymptotic diffusion
coefficient from DD matched that from simulations better than
RBD, but neither matched very well (or very poorly). Figure 2(a)
shows that the ODE with self-closure (Equation (19)) can very
closely match simulation results for the evolution of Dx as a
function of the parallel displacement z. The results for DD and
RBD do not match the evolution of D(z) as well. Interestingly,
the Lagrangian correlation as plotted in Figure 2(b) appears
visually similar for the various approximations (for the ODE,
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(a)

(b)

(c)

Figure 1. (a) Evolution of the running magnetic field line diffusion coefficient
Dx as a function of the displacement z along the large-scale field for pure slab
turbulence with b/B0 = 1 according to the ODE discussed in the text (dashed
black curve) and direct computer simulations (red curve). The horizontal dashed
line indicates the asymptotic diffusion coefficient derived from quasilinear
theory (Jokipii & Parker 1968), which is very accurate for pure slab turbulence.
(b) The Lagrangian correlation function 〈bxb′

x〉 ≡ 〈bx [x⊥(0), 0]bx [x⊥(z), z]〉.
(c) The kurtosis of the distributions of the displacements Δx (red curve) and Δy

(blue curve), which remains close to the value of 3 as expected for a Gaussian
displacement distribution. This figure indicates that for pure slab turbulence,
the field line random walk evolution is very well explained by the ODE, as
expected because the decorrelation of the fluctuating field is independent of the
distributions of displacements Δx and Δy.

(A color version of this figure is available in the online journal.)

DD, or RBD) and the simulation, yet the differences for DD and
RBD become apparent when integrating to obtain D(z).

Let us examine whether the ODE with self-closure has served
to model the transition from RBD behavior at low z to DD
behavior at high z, which was the motivation for this study.
In Figure 2(a) it is seen that for z < 1, the RBD theory
provides a very close match to the ODE and to simulation results,
whereas the DD model deviates noticeably. However, at higher
z the evolution of D(z) from the RBD theory flattens out too
quickly and increasingly deviates from the ODE and simulation
results. On the other hand, while D(z) from the DD model
deviates initially, at later z it evolves with a very similar slope
to that for the ODE and simulations. Finally, for asymptotic
diffusion the results for the ODE, simulation, DD, and RBD
are 0.427, 0.419, 0.390, and 0.371, respectively. We see that the
ODE indeed provides a better match with simulations, not only
of the asymptotic diffusion coefficient but also of the FLRW
evolution, thus increasing confidence that it models the physics
better by naturally transitioning from RBD to DD behavior as a
function of z.

From Figure 2(c), we see that the kurtosis K is significantly
different from 3 throughout this z-range, indicating that the dis-
placement distribution has a significant deviation from Gaus-
sianity. However, from this and other examples we have found

(a)

(b)

(c)

Figure 2. Like Figure 1, but for 2D+slab turbulence with r = 1 and a
slab fraction fs = 0.8. Results are shown for direct computer simulations
(red curve), the ODE (dashed black curve), and the assumptions of diffusive
decorrelation (DD; dotted curve) and random ballistic decorrelation (RBD; dash-
dotted curve). All model assumptions yield results in reasonable agreement with
computer simulations, and the ODE model provides the best agreement. The
kurtosis remains above 2.8, which is found to be associated with good agreement
between the ODE model and computer simulations.

(A color version of this figure is available in the online journal.)

that when K remains above about 2.8, the ODE provides an
accurate estimate of the diffusion coefficient D(z).

Finally, we consider an example with r = 0.3 and fs = 0.4,
for which Ghilea et al. (2011) found that the DD theory provided
a very good match to the simulation value for the asymptotic
diffusion coefficient. Figure 3(a) shows that none of the theories
provide an accurate description of the FLRW evolution for
z > 10, though the ODE remains accurate for the greatest
distance z, and the DD model approaches the simulation result
asymptotically. Similarly, from Figure 3(b) we may conclude
that none of the theories provide a very accurate description of
the Lagrangian correlation.

Interestingly, the kurtosis K falls below 2.8, and from a survey
over parameter space (A. P. Snodin et al. 2012, in preparation)
we find that such a low minimum K value is associated with a
substantial deviation of the ODE from the simulation results. To
put that another way, sufficiently non-Gaussian displacement
distributions are associated with inaccuracy of the ODE. An
examination of the displacement distribution at the minimum
kurtosis found in Figure 3(c) confirms that it is non-Gaussian
(see Figure 4). It can easily be shown that a sum of two different
Gaussian distributions will always have K > 3, which is not
consistent with our simulation results.

The asymptotic diffusion coefficients are 0.133, 0.103, 0.102,
and 0.757 for the ODE, DD, simulation, and RBD, respectively.
From the asymptotic diffusion coefficient alone, one might
conclude that the DD theory works well. However, from
examination of the evolution in Figure 3, we must conclude
that the DD theory fails to correctly describe the evolution of
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(a)

(b)

(c)

Figure 3. Like Figure 1, but for 2D+slab turbulence with r = 0.3 and a
slab fraction fs = 0.4. Results are shown for direct computer simulations
(red curve), the ODE (dashed black curve), and the assumptions of diffusive
decorrelation (DD; dotted curve) and random ballistic decorrelation (RBD;
dash-dotted curve). In this case, all models deviate substantially from the
simulation results for the field line random walk evolution, presumably because
of trapping effects. The minimum kurtosis is below 2.8, implying a displacement
distribution that is substantially non-Gaussian. Such a low minimum kurtosis is
found to be associated with substantial deviation between the ODE model and
computer simulations.

(A color version of this figure is available in the online journal.)

D(z), despite its near match with the simulation for asymptotic
diffusion. In particular, the ODE starts to become inaccurate
at z ∼ 3, and from then on its estimate of D(z) is too large,
continuing to increase with z even when the simulation value
has become nearly constant. The assumption of DD, which is
designed for large z values, becomes inaccurate much earlier
(at z ∼ 1) and underestimates D(z). However, like the ODE, its
estimate of D(z) continues to rise with z, which compensates
for its initial underestimate, bringing it into closer agreement.

4. DISCUSSION

Our motivation for this work was to seek a unified theory
of the FLRW that can provide improved accuracy by treating
a transition from low-z (RBD) to high-z (DD) behavior and to
verify this transition by examining the evolution of the FLRW
with distance z. We have considered the ODE introduced by
Saffman (1962), Taylor & McNamara (1971), and others and
explain how a variety of FLRW theories in the literature are re-
lated to this ODE. It is exactly integrable for the case of pure slab
fluctuations. For other cases, various studies have used closures
to relate the Lagrangian correlation to known quantities or the
variance V (z), often employing Corrsin’s hypothesis (Corrsin
1959) and assuming a Gaussian displacement distribution.

We have employed a version of the ODE with a closure that
self-consistently calculates the variance V (z) of the magnetic
field line displacement distribution as a function of distance
z along the large-scale field. The results from this ODE were
compared with RBD and DD models, as well as direct computer

Figure 4. PDF of displacements x from computer simulations found at the
minimum kurtosis (i.e., at about z = 6.4) of Figure 3(c) (r = 0.3, fs = 0.4).
The PDF is shown only for x � 0. Also shown is a Gaussian PDF with the same
variance as found in the simulation.

simulations of the FLRW. We examined the FLRW evolution,
and for the cases considered, all theories and simulations are
consistent with the expected free-streaming (random ballistic)
trajectories at low z, for which V (z) ≈ (〈b2

x〉/B2
0 )z2 and

D(z) ≈ (〈b2
x〉/B2

0 )z. The theories and simulations then approach
asymptotic diffusion at large z, but with values of the asymptotic
diffusion coefficient that depend on details of the intermediate
evolution.

We find that in some cases the ODE provides a better
match than RBD or DD to direct simulation results, not only
for asymptotic diffusion but also for the FLRW evolution,
thus increasing confidence that it correctly models the physics
underlying the field line diffusion. From the details of the
evolution, we can also verify that the ODE behaves like the RBD
model at low z and like the DD model at high z (see Figure 2).
In such cases, we have successfully identified an accurate model
that treats the transition from RBD to DD behavior.

That said, it should be noted that for practical applications
the ODE is more complicated to use. To include the field line
diffusion coefficient in another theory or computer code, the
explicit formula for RBD (Ghilea et al. 2011) or even the implicit
formula for DD (Matthaeus et al. 1995) is more convenient.
Also, when the ODE is accurate, the RBD and DD theories
also match simulations to within a factor of two (A. P. Snodin
et al. 2012, in preparation). For some applications that level of
accuracy might be sufficient, considering that some of the inputs
to a calculation such as the fluctuation energy and the bendover
scales λ and λ⊥ may also be uncertain or variable.

For the case shown in Figure 3, why is the ODE inaccurate?
This could be due to the assumption of Corrsin’s hypothesis
or the assumption of a Gaussian displacement distribution,
and further evidence is needed to distinguish between those
possibilities. We do find that substantial non-Gaussianity (i.e.,
low kurtosis) is associated with inaccuracy of the ODE, but
that does not necessarily imply that it causes the inaccuracy—a
point that is quite easy to recognize from the work of Weinstock
(1976).
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Ghilea et al. (2011) identified trapping behavior as a reason
for inaccuracy of the RBD and DD theories (of Bohm diffusion)
in some parameter ranges. Trapping behavior and/or percolation
(e.g., Gruzinov et al. 1990; Isichenko 1991b; Ottaviani 1992)
relate to temporary topological trapping on closed flux surfaces
when the fluctuations are nearly 2D, or more precisely, when
the asymptotic field line diffusion is dominated by the 2D
component of fluctuations. Such trapping can also explain
dropouts of energetic particles from impulsive solar flares as
observed near Earth (Ruffolo et al. 2003; Chuychai et al.
2007; Seripienlert et al. 2010). Although for the case shown in
Figure 3, the asymptotic diffusion coefficient for DD agrees with
that from simulation results, so that Ghilea et al. (2011) did not
include this case in the parameter range with trapping effects, we
show that the DD theory does not accurately model the FLRW
evolution and thus conclude that the agreement is fortuitous.
Given that both RBD and DD provide inaccurate descriptions
of the evolution, and that the ODE provides a transition from
RBD to DD behavior, we conclude that all three theories are
probably failing due to trapping effects. Some previous studies
already concluded that trapping behavior implies that Corrsin’s
hypothesis does not work properly (Vlad et al. 1998; Neuer &
Spatschek 2006; Negrea et al. 2007), which is a possible
explanation for why all these theories are inaccurate for this
case.

This work was partially supported by a Postdoctoral Fellow-
ship from Mahidol University, the Thailand Research Fund, the
U.S. NSF (AGS-1063439 and SHINE AGS-1156094), NASA
(Heliophysics Theory NNX08AI47G & NNX11AJ44G), and
the Solar Probe Plus/ISIS project.
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