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When a magnetic field consists of a mean part and fluctuations, the stochastic wandering of its field

lines is often treated as a diffusive process. Under suitable conditions, a stable value is found for the

mean square transverse displacement per unit parallel displacement relative to the mean field. Here,

we compute the associated field line diffusion coefficient for a highly anisotropic “noisy” reduced

magnetohydrodynamic model of the magnetic field, which is useful in describing low frequency

turbulence in the presence of a strong applied DC mean magnetic field, as may be found, for

example, in the solar corona, or in certain laboratory devices. Our approach is nonperturbative,

based on Corrsin’s independence hypothesis, and makes use of recent advances in understanding

factors that control decorrelation over a range of parameters described by the Kubo number. Both

Bohm and quasilinear regimes are identified. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4789606]

I. INTRODUCTION

The magnetic field line random walk (FLRW) is an im-

portant feature of magnetic fields in space and astrophysical

settings, describing the statistical character of the field itself,

and also providing an important step in understanding trans-

port of energy, such as electron heat flux and confinement of

energetic charged particles.1–3 For these reasons, the FLRW

is a nearly ubiquitous feature that influences magnetic con-

nectivity, a concept that is frequently encountered in map-

ping field lines from the Sun to the geospace environment, or

from an emitter of particles to a spacecraft or even a ground

level detector.4–6 On general grounds, one expects for a ho-

mogeneous system that the mean square displacement of

field lines hðDxÞ2i becomes diffusive with a constant, asymp-

totic diffusion coefficient D1 ¼ hðDxÞ2i=ð2zÞ in the limit of

large displacement z along the mean (or average) magnetic

field. There are interesting cases in which this expectation is

not achieved, notably when too much symmetry is present,

for a periodic system, or in cases where trapping can occur,

and in such cases the mean square displacement may scale as

zb with b 6¼ 1.7 However, for a very broad class of homoge-

neous systems with finite correlation scales ‘c, we expect

that when z� ‘c, the increments of the displacement

become uncorrelated and hðDxÞ2i becomes diffusive. It is

such cases that concern us here. We will work in the context

of the reduced magnetohydrodynamics (RMHD) model in

which the magnetic field is composed of a mean field and

transverse fluctuations.8 Specifically, we will derive a diffu-

sion coefficient for FLRW in the context of homogeneous

“noisy” RMHD (to be explained shortly), employing nonper-

turbative methods based on the Taylor-Green-Kubo (TGK)

formulation of diffusion and the use of Corrsin’s independ-

ence hypothesis. Along the way, we will employ recent

developments in understanding how decorrelation of the

TGK integrand occurs at large displacements, without the

usual assumption of quasilinear ordering. In this way, the

theory will be intrinsically nonlinear, and for various ranges

of Kubo number (see below) we will find both quasilinear

and Bohm-like regimes of diffusion. In Sec. VI, we will out-

line several potential applications of this analytical frame-

work for field line transport in RMHD.

II. BACKGROUND AND RECENT DEVELOPMENTS IN
FLRW DIFFUSION THEORY

For definiteness, we view the magnetic field B ¼ B0 þ b

as composed of a mean field B0 and a fluctuating component

b. An averaging operator defines these according to

B0 � hBi, and we assume that the fluctuations are transverse,

meaning that b � B0 ¼ 0. We do not assume that fluctuations

are small as we will not be carrying out a perturbation theory.

However, in order to assert the validity of the transversality

condition, we generally expect that the mean field strength B0

cannot be too small compared with the root mean square fluc-

tuation b. (A still stronger condition is needed for RMHD—

see below.) In fact, transversality, equivalent to suppressing

the parallel variance of the fluctuations, is a basic feature of

highly anisotropic models of MHD turbulence,8–10 and occurs

most readily in models that are weakly compressive.11

Apart from the general expectation of diffusive behavior

at large displacements in homogeneous systems with finite

correlation scale as alluded to above, there are three broad

types of FLRW behavior that have been described: (1) In the

quasilinear limit,1,12 the diffusion coefficient scales as

D1 � ðb=B0Þ2. This is associated with the limit of low R,

where one defines the Kubo number as

R ¼ b

B0

kk
k?
: (1)
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Other possibilities are (2) so-called Bohm diffusion with

D1 � b=B0, which has been extensively studied in the con-

text of laboratory devices13,14 and is generally associated

with high Kubo number R� 1; and (3) percolation related

to trapping along 2D flux surfaces3,15 which also can occur

at high Kubo number R.

Many, but not all theories of FLRW in transverse turbu-

lence are based on the Taylor-Green-Kubo formula,16–18

which can be written for an (x, y, z) Cartesian system aligned

with B0 ¼ B0ẑ as

hðDxÞ2i
2Dz

¼
ð1

0

hbx½x?ð0Þ; 0�bx½x?ðzÞ; z�idz; (2)

where the integrand is the Lagrangian correlation RLðzÞ
¼ hbx½x?ð0Þ; 0�bx½x?ðzÞ; z�i, having randomly distributed

arguments x?. Care should be taken to not confuse RL with

the Eulerian correlation Rðx; y; zÞ ¼ hbxð0; 0; 0Þbxðx; y; zÞi,
which has fixed (non-statistical) arguments. In both cases,

the origin is arbitrary due to the assumption of spatial

homogeneity.

In the classic quasilinear theory of the FLRW, due to

Jokipii12 and Jokipii and Parker,1 one approximates the diffu-

sion coefficient by assuming that one can ignore the depend-

ence on the random argument in the integral, in effect setting

x?ðzÞ ! 0. More recent FLRW work has focused on several

issues and extensions, notably including variation of the Kubo

number to investigate non-quasilinear behavior, and adoption

of models for the turbulence that go beyond the one-

dimensional “slab” field that occupies a central role in the

quasilinear case. Extensions to FLRW have often proceeded

through considerations of the dependence of the TGK integral

on the trajectory. When a random trajectory is included on the

right hand side of Eq. (2), the theory can become nonlinear.

A substantial amount of work on the FLRW as well as

particle scattering theory has made use of a “two-component”

2Dþslab model of transverse turbulent fluctuations, which

was motivated by observations19 and supported at a basic

physics level by simulations.20,21 In this model, the slab com-

ponent bslabðzÞ has wavevectors only along the kz-axis, with

kx ¼ ky ¼ 0, and the 2D component b2Dðx; yÞ has wavevec-

tors only in the kx-ky plane, with kz ¼ 0. The magnetostatic

2Dþslab model is sufficiently simple to permit tractable ana-

lytic theories. The model includes power in all dimensions of

k-space but only requires one- and two-dimensional Fourier

transforms to create synthetic realizations of turbulence, so it

provides a useful testbed for direct computer simulations of

turbulent field line diffusion to test the analytic theories. The

first analytic theory for the 2Dþslab FLRW22 proposed a

combination of quasilinear and Bohm diffusion terms. In

fact, computer simulations of the FLRW in 2Dþslab turbu-

lence have found evidence for all 3 types of behavior in dif-

ferent ranges of the parameters for the turbulence amplitude

and slab fraction.23

Corrsin’s independence hypothesis24 has often been

employed in treatments of the FLRW in non-perturbative

models.14,22,25 This is a simple but powerful approximation,

to be discussed further below, that replaces the Lagrangian

correlation by a statistical sampling of the Eulerian correla-

tion. Once Corrsin’s hypothesis is adopted, the relevant ques-

tion becomes how to approximate the statistics of the

trajectory in the approximate TGK integrand, especially the

variance r2ðzÞ of the conditional probability distribution

Pðx?; zÞ. One way to obtain Bohm-like diffusion terms is to

use what we call “diffusive decorrelation” (DD), setting

r2ðzÞ ¼ 2D1z, as appropriate for asymptotic diffusion. A

more recent theory based on random ballistic decorrelation

(RBD) considered that two-component field lines spread bal-

listically in random directions with r2ðzÞ ¼ ðhb2
xi=B2

0Þz2,

which is relevant for the z-range before the fluctuating field

decorrelates and the field line trajectories become diffusive.23

Each theory, using DD or RBD, was found to provide a better

description of simulation results in different parameter

regimes, due to the interplay of the 2D and slab components

of turbulence.

While the two-component model (2Dþslab model) of

magnetic fluctuations has certain advantages, there are some

disadvantages. With its simplified structure, the 2Dþslab

model has no oblique modes at general wavevectors k. In

addition, the Kubo number is undefined, making it difficult

to relate results for 2Dþslab turbulence, with extended

regions of successful agreement between Corrsin-hypothesis

theories (which combine quasilinear and Bohm diffusion)

and simulation results, to results for other turbulence models

as expressed in terms of the Kubo number.

There have also been numerical studies of the FLRW or

analogous problems using single-component models of turbu-

lence,7,26–28 which described a transition from quasilinear to

percolative behavior and also transitions between diffusive and

super- or sub-diffusive behavior. More recently, the local

power-law index c (such that D1 / Rc) of the FLRW was

reported to vary from the quasilinear value of c ¼ 2 at very

low Kubo number to roughly the percolation value of c ¼ 0:7
at extremely high Kubo number.29 Given that observed plas-

mas typically have some coupling between quasi-slab and

quasi-2D modes that exchanges energy between them, extreme

Kubo numbers are unlikely to be realized in nature, so it is still

quite interesting to consider the range 0:1 < R < 10, in which

their results may also be consistent with a combination of qua-

silinear and Bohm diffusive behavior.

Here, we present non-perturbative analytic calculations

based on Corrsin’s hypothesis for the case of magnetic fluc-

tuations of the type found in RHMD turbulence. There are

several reasons that motivate this choice for the magnetic

field model. RMHD is a widely used model for describing

anisotropic magnetic turbulence in the presence of a strong

large-scale magnetic field. For RMHD fluctuations, the Kubo

number is well-defined, and the magnetic fluctuations are

transverse. These properties provide substantial simplifica-

tion for both theory and computer simulations. RMHD is a

dynamical model, so that understanding of the FLRW for

magnetostatic RMHD fluctuations can serve as a baseline for

studying dynamical effects.

In the present work, we use what we call a “noisy

RHMD” model, in which the range K of the wavevector com-

ponent kz along the large-scale field direction ẑ is an adjusta-

ble parameter. Although RMHD is typically used for R � 1,

a change in B0 leads to a change in R. However, anisotropic
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turbulence with strongly transverse fluctuations is unlikely to

persist if B0 � b, making it physically unlikely that RMHD

would be applicable for R� 1. In any case, our model for-

mally allows an arbitrary specification of the Kubo number

R, ranging from R� 1 with a nearly 2D FLRW to a “noisy”

(quasilinear) limit with R� 1 that resembles a 1D slab fluc-

tuation model. This flexible specification of R allows us to

address the theoretical issue of the dependence of D1 on R,

even if RMHD fields are more likely to be found in physical

situations with R � 1.

III. NOISY RMHD MODEL OF MAGNETIC
FLUCTUATIONS

The noisy RMHD model describes magnetic fluctuations

with a turbulent power spectrum similar to that obtained

from a dynamical RMHD simulation. We express the total

magnetic field as

B ¼ B0ẑ þ bðx; y; zÞ; (3)

where B0ẑ is a constant mean (large-scale) field and b?ẑ.

The statistically homogeneous fluctuating field b is given by

bðx; y; zÞ ¼ r? � ½aðx; y; zÞẑ�; (4)

where the subscript “?” indicates a projection perpendicular

to the mean field in which only x- and y-components are

included. We refer to the scalar a as the potential function.

In terms of wavevectors k, we can write

bðkÞ ¼ 	ik? � ½aðkÞẑ�; (5)

and we specify the potential function in k-space by

aðkÞ /
a2Dðkx; kyÞeiuðkÞ for jkzj 
 K

0 for jkzj > K;

(
(6)

where uðkÞ is a random phase and the proportionality con-

stant is set by requiring the fluctuation energy to be inde-

pendent of K. In terms of the power spectra, this model gives

PxxðkÞ ¼
ffiffiffiffiffiffi
2p
p

k2
y Aðkx; kyÞ=ð2KÞ for jkzj 
 K

0 for jkzj > K

(

PyyðkÞ ¼
ffiffiffiffiffiffi
2p
p

k2
x Aðkx; kyÞ=ð2KÞ for jkzj 
 K

0 for jkzj > K;

( (7)

where Pii is the 3D power spectrum of bi and A is the 2D

power spectrum of a2D. This “boxcar” dependence on kz has

been used to characterize the results of RMHD simula-

tions.30 Note that this specification includes the energy-

containing range, so there is no justification for adopting

more specific forms, such as one appropriate for steady iner-

tial range spectra.

It is straightforward to derive that the correlation length

along z is given by ‘c ¼ p=ð2KÞ. For convenience, let us

assume axisymmetry around the mean field direction, i.e., that

all quantities are statistically identical in the x and y direc-

tions, and A ¼ Aðk?Þ where k? �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. Then, the total

magnetic power spectrum Pðk?; kzÞ � PxxðkÞ þ PyyðkÞ is also

axisymmetric. Now, let us specify the Kubo number as

R ¼ b

B0

‘c

‘?
¼ b

B0

p
2K‘?

; (8)

where b �
ffiffiffiffiffiffiffiffiffi
hb2i

p
represents the rms fluctuation and ‘? is

the correlation length for the total correlation hbð0Þ � bðx?Þi.
It is straightforward to show that ‘? for the three-

dimensional noisy RMHD field is the same as the total corre-

lation length31 kc2 of the two-dimensional field correspond-

ing to a2D, so that

‘? ¼ kc2 ¼
Ð

k?Aðk?Þdk?Ð
k2
?Aðk?Þdk?

¼
Ð

Pðk?; kzÞ=k?dkÐ
Pðk?; kzÞdk

; (9)

where k? ¼ ðkx; kyÞ. Thus, ‘? is the k	1
? moment of the total

magnetic power spectrum.

IV. ANALYTIC THEORIES OF THE ASYMPTOTIC FIELD
LINE DIFFUSION COEFFICIENT

In this section, we present two analytic derivations for

the asymptotic diffusion coefficient D1 of the magnetic field

line random walk in noisy RMHD turbulence, based on the

DD and RBD approximations.

A. Diffusive decorrelation

Our derivation initially follows previous derivations for

2Dþslab turbulence.22,23,32 For transverse fluctuations, the

trajectory of a magnetic field line can be described by x(z)

and y(z), which are determined by

dx

dz
¼ bxðx; y; zÞ

B0

;
dy

dz
¼ byðx; y; zÞ

B0

: (10)

Considering the field line displacements Dx and Dy over a

parallel displacement z, the problem of the FLRW is to then

find the mean squared displacement (variance)

VðzÞ � hðDxÞ2i ¼ hðDyÞ2i; (11)

where we have used the assumption of axisymmetry.

The change in, say, the x-coordinate over a distance z is

Dx � xðzÞ 	 xð0Þ ¼ 1

B0

ðz

0

bx½x?ðz0Þ; z0�dz0: (12)

The ensemble average of ðDxÞ2 can be expressed by

hDx2i ¼ 1

B2
0

ðz

0

ðz

0

hbx½x?ðz0Þ; z0�bx½x?ðz00Þ; z00�idz0dz00: (13)

With the assumption of statistical homogeneity, one can write

hDx2i ¼ 1

B2
0

ðz

0

ðz	z0

	z0
hbxð0; 0Þbx½Dx0?ðDz0Þ;Dz0�idDz0dz0;

(14)
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where Dx0? � x?ðz00Þ 	 x?ðz0Þ and Dz0 � z00 	 z0 for loca-

tions along a field line trajectory.

In this section, we consider asymptotic field line diffu-

sion for large z, which occurs when the correlation vanishes

after a very long distance, so we can extend the limits of the

Dz0 integration to 61. In this case, the z0 integration is triv-

ial and we obtain

hDx2i ¼ 2D1z; (15)

where

D1 ¼
1

B2
0

ð1
0

hbxð0; 0Þbx½x?ðzÞ; z�idz; (16)

which is the TGK formula for the asymptotic diffusion coef-

ficient. This integral is dominated by low values of z where

the Lagrangian correlation remains strong, before the mag-

netic fluctuation decorrelates.

Our first key assumption is Corrsin’s independence hy-

pothesis.24 This assumption relates the Lagrangian correla-

tion function in Eq. (16) to the Eulerian correlation function,

Rxx � hbxð0; 0Þbxðx?; zÞi, averaged using the conditional

probability Pðx?jzÞ of finding a displacement x? after a dis-

tance z

hbxð0; 0Þbx½x?ðzÞ; z�i ¼
ð

Rxxðx?; zÞPðx?jzÞdx?: (17)

Now is useful to express the correlation function

Rxxðx?; zÞ in terms of its Fourier transform, the power spec-

trum PxxðkÞ

Rxxðx?; zÞ ¼
1

ð2pÞ3=2

ð
PxxðkÞe	ikxxe	ikyye	ikzzdk; (18)

from which we obtain

hbxð0; 0Þbx½x?ðzÞ; z�i ¼
1

ð2pÞ3=2

ð ð
PxxðkÞe	ikxxe	ikyy

� e	ikzzPðx?jzÞdx?dk: (19)

Our second key assumption is that the displacement dis-

tribution Pðx?jzÞ is Gaussian in x and y, with standard devia-

tion rðzÞ. Then, we perform the integration over x? to obtain

hbxð0; 0Þbx½x?ðzÞ; z�i ¼
1

ð2pÞ3=2

ð
PxxðkÞe	

1
2
k2
?r2ðzÞe	ikzzdk;

(20)

where k2
? ¼ k2

x þ k2
y . The combination of the assumptions of

Corrsin’s hypothesis and a Gaussian displacement distribu-

tion was employed for purely 2D turbulence.14 Substituting

this into the TGK formula, Eq. (16), we obtain

D1 ¼
1

B2
0

1

ð2pÞ3=2

ð
PxxðkÞ

ð1
0

e	
1
2
k2
?r2ðzÞe	ikzzdz

� �
dk: (21)

The third key assumption specifies r2 as a function of z.

In this subsection, we use

r2 ¼ 2D1z; (22)

where D1 is identified with the asymptotic diffusion coefficient

in Eq. (16), providing closure. We refer to this framework as

DD because the decorrelation of hbxð0; 0Þbx½Dx0?ðzÞ; z�i is

influenced by diffusive spreading of the displacement distribu-

tion Pðx?jzÞ according to Eqs. (17) and (22). This DD approach

was has been employed for purely 2D turbulence25 or the 2D

component of 2Dþslab turbulence.22 While Eq. (22) is evi-

dently applicable to asymptotic diffusion, it can be inaccurate

for the initial range of z.
Then, we perform the z-integration in Eq. (21) to obtain

D1 ¼
1

B2
0

1

ð2pÞ3=2

ð
PxxðkÞ

D1k2
? þ ikz

dk: (23)

Note that the imaginary part of the integrand is an odd func-

tion of kz, so it integrates to zero and the result is a real num-

ber. We then use the power spectrum for noisy RMHD

turbulence from Eq. (7) to obtain

D1 ¼
1

B2
0

1

2p

ð
k2

y Aðk?Þ
2K

ðK

	K

dkz

D1k2
? þ ikz

� �
dk?: (24)

This leads to

D1 ¼
1

2B2
0

1

2p

ð
k2
?Aðk?Þ

K
tan	1 K

k2
?D1

� �
dk?; (25)

where we have made use of axisymmetry to replace k2
y inside

the integral with ðk2
x þ k2

yÞ=2 ¼ k2
?=2.

Note that the mean squared magnetic fluctuation

hb2i ¼ Rxxð0Þ þ Ryyð0Þ, which we write, as above, as b2, is

the inverse transform of Pðk?; kzÞ at the origin. Thus

b2 ¼ 1

ð2pÞ3=2

ð
Pðk?; kzÞdk ¼ 1

2p

ð
k2
?Aðk?Þdk? (26)

and we can write the expression for D1 as

D1 ¼
b2

2B2
0

Ð
k2
?Aðk?Þtan	1ðK=k2

?D1Þ=Kdk?Ð
k2
?Aðk?Þdk?

: (27)

Note that this is an implicit equation in which D1 also

appears on the right hand side.

It is useful to re-write this result in terms of scaled,

dimensionless variables, indicated by primed quantities.

Consider scaling quantities depending on z by z0 ¼ Kz;
k0z ¼ kz=K, etc., and quantities depending on x or y by

x0 ¼ x=‘?; k0? ¼ k?‘?, etc. This leads to a scaled diffusion

coefficient D0 ¼ D=ðK‘2
?Þ. Recalling from Eq. (8) that

R ¼ ðb=B0Þp=ð2K‘?Þ, we obtain
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D01 ¼
2

p2
R2

Ð
k02?Aðk0?Þtan	1ð1=k02?D01Þdk0?Ð

k02?Aðk0?Þdk0?
: (28)

These expressions for D1 and D01 simplify in the limit

of very low or very high Kubo number. Consider low R
values such that D1 � K=k2

? over the range of k? where

k2
?Aðk?Þ is relatively large, i.e., the energy-containing

range of the turbulence. In that range, the inverse tangent

is approximately p=2. Recalling that ‘c ¼ p=ð2KÞ, we

obtain

D1 ¼
1

2

b2

B2
0

‘c ðlow RÞ; (29)

which is precisely the quasilinear result.1 In terms of the

dimensionless diffusion coefficient, this becomes

D01 ¼
R2

p
ðlow RÞ (30)

and we can see that D01 varies as the Kubo number squared.

Now, consider high R values such that D1 � K=k2
?

over the energy-containing range. In this range, tan	1x � x
and we obtain

D2
1 ¼

b2

2B2
0

Ð
Aðk?Þdk?Ð

k2
?Aðk?Þdk?

¼ b2

2B2
0

ha2i
b2
¼ b2

B2
0

~k
2

2

D1 ¼
b

B0

~kffiffiffi
2
p ðhigh RÞ;

(31)

which is the same as the previous result for 2D fluctua-

tions,22 where ~k is the ultrascale, defined32 by ~k
2 � ha2i=b2.

Note that the ultrascale is the k	2
? moment of the total mag-

netic power spectrum. This type of field line diffusion is

called Bohm diffusion because D1 / b=B0. Similarly, the

dimensionless diffusion coefficient becomes

D01 ¼
ffiffiffi
2
p

p

~k
‘?

R ðhigh RÞ (32)

so that D01 / R. These limiting cases serve as a useful check

that our application of the DD approach to noisy RMHD tur-

bulence agrees with previous results of quasilinear diffusion

in the quasi-1D (slab) limit at low R and Bohm diffusion in

the quasi-2D limit at high R.

B. Random ballistic decorrelation

Now, we will change the third key assumption above,

which specified r2 as a function of z based on DD, to

instead assume RBD.23 This treats the field line trajectories

as ballistic, with each trajectory in a random direction, so

that

r2 ¼ hb
2
xi

B2
0

z2 ¼ 1

2

b2

B2
0

z2: (33)

This is based on the expectation that the TGK integral is

dominated by low z values where the Lagrangian correlation

remains strong, and that field line trajectories remain ballistic

over that range because they have not decorrelated yet.

Using this RBD assumption, Eq. (21) becomes

D1 ¼
1

2B2
0

1

ð2pÞ3=2

ð
PxxðkÞ

�
ð1
	1

exp 	 1

2
k2
?
hb2

xi
B2

0

z2 	 ikzz

� �
dz

� �
dk: (34)

Note that we have replaced the z-integral from 0 to 1
with half the integral from 	1 to 1. This is valid

because the complete integrand is invariant under the si-

multaneous transformation z! 	z and kz ! 	kz, which

yields the same multiple integral with the z-integral from

	1 to 0. Then

ð1
	1

exp 	 1

2
k2
?
hb2

xi
B2

0

z2 	 ikzz

� �
dz

¼ 1

k?

ffiffiffiffiffiffiffiffiffiffi
2pB2

0

hb2
xi

s
exp 	 k2

z

2k2
?

B2
0

hb2
xi

� �
(35)

and

D1 ¼
ffiffiffi
p
p

bB0

1

ð2pÞ3=2

ð
PxxðkÞ

k?
exp 	 k2

z

k2
?

B2
0

b2

� �
dk: (36)

Using Eq. (7) for a noisy RMHD field yields

D1 ¼
ffiffiffi
p
p

bB0

1

2p

ð
k2

y Aðk?Þ
k?

1

K

ðK

0

exp 	 k2
z

k2
?

B2
0

b2

� �
dkz

� �
dk?:

(37)

The result of the kz-integration is an error function

ðK

0

exp 	 k2
z

k2
?

B2
0

b2

� �
dkz ¼

ffiffiffi
p
p

2
k?

b

B0

erf
K

k?

B0

b

� �
; (38)

and after further manipulation we obtain

D1 ¼
p

4K

b2

B2
0

Ð
k2
?Aðk?Þerf½ðK=k?ÞðB0=bÞ�dk?Ð

k2
?Aðk?Þdk?

: (39)

In terms of dimensionless variables, we have

D01 ¼
R2

p

Ð
k02?Aðk0?Þerfðp=2Rk0?Þdk0?Ð

k02?Aðk0?Þdk0?
: (40)

As in the DD case, the expressions for D1 and D01 from

this RBD theory also simplify in the limit of very low or

very high Kubo number. For R� 1, the argument of the

error function is much greater than 1 for k? in the energy-

containing range (k?‘?�1) and we can replace the error

function with its asymptotic value of 1. Then, we again

obtain the classic quasilinear limit
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D1 ¼
1

2

b2

B2
0

‘c; D01 ¼
R2

p
ðlow RÞ: (41)

In the opposite limit of R� 1, the argument of the error func-

tion is much less than 1 for most of the energy-containing

range. For x� 1; erfðxÞ � ð2=
ffiffiffi
p
p
Þx, and we obtain

D1 ¼
ffiffiffi
p
p

2

b

B0

‘?; D01 ¼
Rffiffiffi
p
p ðhigh RÞ; (42)

where we have made use of Eq. (9). Since ‘? ¼ kc2, this

expression for the diffusion coefficient is the same as that

derived previously23 (with the identification b ¼ b2D because

the present work uses only one fluctuation component, which

in the high-R, quasi-2D limit functions like b2D). Thus, this

RBD theory also tends toward Bohm diffusion in the high-R
limit, and we again find a transition from the classic result

for quasilinear diffusion in the quasi-1D (slab) limit at low R
to the previous Bohm diffusion result in the quasi-2D limit at

high R.

C. Numerical evaluation of analytic theories

In Figure 1, we present results for D1 vs. R based on nu-

merical evaluation of the analytic DD and RBD theories, as

well as the solution to an ordinary differential equation

(ODE) model to be presented in Sec. V. To perform a numer-

ical evaluation of analytic results, we must specify a power

spectrum for the noisy RMHD turbulence. Here, we use

Aðk?Þ /
1

½1þ ðk?k?Þ2�7=3
; (43)

though we stress that the analytic theories are not restricted

to this choice. The above form for Aðk?Þ has the properties

that the omnidirectional 2D power spectrum at high k? is

proportional to k
	5=3
? , representing Kolmogorov scaling in

the perpendicular wavevectors in the inertial range,32 and

the low-k? behavior satisfies the requirements of strict

homogeneity.31

We report all our numerical results for x- and y-distances

in units of the perpendicular correlation scale ‘? and z-distan-

ces in units of K	1. Thus, the numerical values we report are

the values of the dimensionless (primed) variables. Evaluation

of ‘? given Aðk?Þ as specified above leads to the relation

k? ¼ 2:678‘?, and we also find that ~k ¼ 1:546‘?. We

numerically evaluated the analytic results with the help of the

Mathematica program (Wolfram Research, Inc.). In addition

to D1, we also report a logarithmic derivative

c � R

D1

dD1
dR

; (44)

which is a local power-law index such that D1 / Rc. Figure 2

shows c as a function of R.

V. EVOLUTION OF THE FIELD LINE RANDOM WALK

In addition to calculating the asymptotic diffusion coef-

ficient of magnetic field lines, it is also interesting and useful

to consider the evolution of the FLRW33 as a function of the

parallel distance z. We can define a running diffusion coeffi-

cient as

FIG. 1. Asymptotic magnetic field line diffusion coefficient D1 vs. the

Kubo number R for noisy RMHD turbulence. Units are explained in the text.

For each analytic theory (DD, RBD, or ODE), the behavior undergoes a

transition from D1 / R2 (for quasilinear diffusion) at R� 1 toward D1 /
R (for Bohm diffusion) at R� 1. For R � 5, which includes the range of

Kubo numbers over which RMHD is likely to be applicable, we recommend

the RBD theory for its ease of use and because it is corroborated by the

more complete ODE theory.

FIG. 2. Local power-law index c � ðR=D1ÞðdD1=dRÞ of the asymptotic

magnetic field line diffusion coefficient D1 vs. the Kubo number R. For each

theory (DD, RBD, or ODE), the index tends from 2 (for quasilinear diffusion)

at low R toward 1 (for Bohm diffusion) at high R. Note that all three theories

predict rather similar asymptotic diffusion coefficients (see Figure 1), so here

we see that cðRÞ is quite sensitive to minor details in the functional depend-

ence of D1ðRÞ.
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DðzÞ � 1

2

dV

dz
: (45)

Then, we describe the FLRW evolution in terms of the de-

pendence of D on z. In the limit of large z, for cases of physi-

cal interest D typically approaches a constant asymptotic

value, D1. Note that Eq. (13) can also be expressed as a

second-order ODE

d2V

dz2
¼ 2

B2
0

hbxð0; 0Þbx½x?ðzÞ; z�i; (46)

or as an equivalent system of two first-order ODEs,

dV

dz
¼ 2D; (47)

dD

dz
¼ 1

B2
0

hbxð0; 0Þbx½x?ðzÞ; z�i; (48)

with the initial conditions V(0)¼D(0)¼ 0.

Again making use of the assumptions of Corrsin’s hy-

pothesis and a Gaussian displacement distribution, the sec-

ond equation becomes

dD

dz
¼ 1

B2
0

1

ð2pÞ3=2

ð
PxxðkÞe	

1
2
k2
?r2ðzÞe	ikzzdk: (49)

Substituting the power spectrum for noisy RMHD turbu-

lence, and performing the kz-integration, we obtain

dD

dz
¼ b2

2B2
0

Ð
k2
?Aðk?Þe	

1
2
k2
?r2ðzÞdk?Ð

k2
?Aðk?Þdk?

sin Kz

Kz
; (50)

or in terms of dimensionless variables,

dV0

dz0
¼ 2D0; (51)

dD0

dz0
¼ 2

p2
R2

Ð
k02?Aðk0?Þe	

1
2
k02?r

02ðz0Þdk0?Ð
k02?Aðk0?Þdk0?

sin z0

z0
: (52)

In fact, part of the motivation for defining the dimensionless

scaling z0 ¼ Kz is that it simplifies the last factor in this

equation.

To solve the differential equations, we need a closure to

express r2 in terms of z. The DD and RBD theories correspond

to integrable closures in which the right hand side of Eq. (50),

or alternatively Eq. (52), is independent of V and D, and can be

directly integrated to yield D(z).33 The DD theory for FLRW

evolution uses r2 ¼ 2D1z or r02 ¼ 2D01z0, which overesti-

mates the actual variance at low z and is accurate at high z. For

example, we can first solve the implicit equation for D1 as

derived in Sec. IV A, and then substitute r2 ¼ 2D1z into

Eq. (50) and integrate to obtain D(z). The RBD theory uses

r2 ¼ ð1=2Þðb2=B2
0Þz2, which can be substituted into Eq. (50),

then integrating to obtain D(z). The dimensionless form is

r02 ¼ ð2=p2ÞR2z02. The RBD expression for r2 is accurate at

low z and overestimates the actual variance at high z.
Another type of closure comes from identifying r2 with

V in the ODE,14,34,35 or by similar derivations.36,37 We refer

to this as self-closure of the ODE because there is no exter-

nal input or specification. From now on, we will refer to this

2nd-order ODE with self-closure as the “ODE” theory. In

the ODE theory, there is a continuous transition of the

Lagrangian correlation [e.g., the right hand side of Eq. (50)]

from the RBD expression at low z, where the RBD assump-

tion of random ballistic trajectories is appropriate, to the DD

expression at high z, where the DD assumption of asymptotic

diffusion is appropriate. Thus, in principle, it is more accu-

rate than the RBD or DD theory, but it has the disadvantage

that deriving D1 generally requires a numerical solution of

the ODE, whereas the RBD and DD theories provide analytic

formulas for D1 as described in Sec. IV.

For the specific case described in Sec. IV C, we have

numerically solved the ODE to determine D1 vs. R, as

shown in Figure 1, and the power-law index c vs. R, shown

in Figure 2. The FLRW evolution is shown in Figure 3 for

the DD, RBD, and ODE theories, based on numerical solu-

tions to Eq. (52) for the corresponding specification of r2ðzÞ.
The results will be discussed in the Sec. VI.

Note that in the limits of low or high R, we can obtain

analytic results for D1 from the ODE with self-closure.

Considering Eq. (50), the right-hand side (the Lagrangian

correlation) involves a product of two terms, a power-

weighted average of e	
1
2
k2
?r2

and the oscillatory decay term

sinðKzÞ=ðKzÞ. For R� 1, the oscillatory term decays faster,

while the exponential remains close to 1. Therefore, in this

limit r2 plays no role, and all three theories tend to the same

limiting form. Approximating the exponential as 1, then

even for the ODE theory, Eq. (50) decouples from equation

Eq. (47) and we can simply integrate the former equation to

obtain

D1 ¼
b2

2B2
0

ð1
0

sin Kz

Kz
¼ 1

2

b2

B2
0

p
2K
¼ 1

2

b2

B2
0

‘c; ðlow RÞ (53)

which is the classic quasilinear result.

In the opposite limit of R� 1, we can instead assume

that the averaged-exponential term decays much faster than

the oscillatory term, i.e., over a z-distance much less than

K	1, so that we can approximate sinðKzÞ=ðKzÞ as 1. Thus, in

this limit, the ODE with self-closure is

d2V

dz2
¼ 1

B2
0

1

2p

ð
k2
?Aðk?Þe	

1
2
k2
?VðzÞdk? ðhigh RÞ: (54)

Then, multiply both sides by dV/dz, construct total z-deriva-

tives (which would not be possible if the oscillatory term

remained), and integrate over z to obtain

1

2

dV

dz

� �2

¼Cþ 1

B2
0

1

2p

ð 	2

k2
?

� �
k2
?Aðk?Þe	

1
2
k2
?VðzÞdk? ðhighRÞ;

(55)
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which is the first integral of the ODE,14 for a constant of

integration C. Simplifying this, and taking differences

between z ¼ 1 and z¼ 0 [recalling the initial condition

D(0)¼ 0 and assuming that Vð1Þ ¼ 1], we obtain

2D2
1 ¼

2

B2
0

1

2p

ð
Aðk?Þdk? ¼ 2

b2

B2
0

~k
2

D1 ¼
b

B0

~k ðhigh RÞ;
(56)

which is a factor of
ffiffiffi
2
p

higher than the DD result for high R
[Eq. (31)] and also differs from the RBD result [Eq. (42)].

We can also use the first integral, which applies to the

high-R limit, to examine the variation of D(z) as z!1. It

can be seen that C ¼ 2D2
1, and note that for Kz� 1=R, the

exponential is non-negligible only for k?‘? � 1. There

Aðk?Þ can be approximated as a constant, A(0), assuming

that A is nearly constant in the energy-containing range of

the fluctuations. Then after some manipulations, it can be

shown that for R� 1 and Kz� 1=R, the ODE gives

DðzÞ ¼ D1 	 Oðz	1Þ.

VI. DISCUSSION

In this work, we have developed analytic theories of the

magnetic FLRW in noisy RMHD turbulence. We have con-

sidered the FLRW in terms of both the asymptotic diffusion

coefficient D1 and the evolution of D as a function of z.

These theories are based on Corrsin’s hypothesis and can

model quasilinear diffusion and Bohm diffusion, but do not

account for some trapping effects. According to previous

work, the effects of percolation or trapping are important for

nearly 2D fluctuations3,15 or a high Kubo number R.

A direct comparison can be given from our results on

several assumptions regarding the dominant factor that pro-

duces decorrelation. From Figure 1, we can compare the

results of DD, RBD, and ODE theories for D1 as a function

of R. All of these assume Corrsin’s hypothesis and a Gaus-

sian displacement distribution, but they differ in their

assumptions for the variance of the perpendicular displace-

ment distribution as a function of the displacement z parallel

to the large-scale field. The DD theory employs the variance

of asymptotic diffusion, and can, therefore, be thought to be

most appropriate for high z. RBD uses the variance of ran-

dom ballistic trajectories, and accordingly is most appropri-

ate for low z. The ODE formulation uses a variance

determined self-consistently, which evolves from RBD to

DD behavior as a function of z.

The transition from RBD to DD behavior can be directly

visualized in Figure 3. In all cases, the ODE result for D ini-

tially varies with z like the RBD model (for random ballistic

field line trajectories) and at high z it varies like the DD

model (for asymptotic field line diffusion). This behavior is

most clearly seen for R¼ 1, where the RBD model ceases to

oscillate after z � 5 because it overestimates the variance of

Pðx?jzÞ and its expression for the Lagrangian correlation

declines too quickly, so that D ceases to evolve. The DD

model is more accurate at high z, and indeed the ODE result

varies in the same way as DD for large z. Nevertheless, the

Lagrangian correlation is already quite low by that high-z
range, and the evolution of the diffusion coefficient D(z) is

dominated by the low-z region where the Lagrangian correla-

tion is still substantial. Therefore, the RBD result is quite

close to the ODE result at all z and the DD result is substan-

tially lower. The match between the ODE and RBD results is

even closer at R¼ 0.1. However, by R¼ 10 we see that the

ODE results are quite different from both the RBD and DD

results. Evidently, the z-range over which the Lagrangian

correlation remains significant in the ODE model is now

greater than the z range over which the field line trajectories

remain ballistic but not great enough to accurately model the

displacement distribution as diffusive.

All the theories undergo a transition from quasilinear

diffusion (D1 / R2) at R� 1 to Bohm diffusion (D1 / R)

at R� 1. In terms of c, a logarithmic derivative of D1 with

respect to R, for which D1 / Rc locally, the results undergo

a transition from c ¼ 2 at R� 1 toward c ¼ 1 as R!1
(see Figure 2).

FIG. 3. Evolution of the field line diffusion coefficient D vs. the parallel dis-

placement z for (a) R¼ 0.1, (b) R¼ 1, and (c) R¼ 10. Units are explained in

the text. The more general ODE theory confirms results of the RBD theory

for R � 5, both in terms of the evolution with z and the asymptotic diffusion

coefficient (see Figure 1). Note that the ODE result varies with z like the

RBD model (for random ballistic field line trajectories) at low z and like the

DD model (for asymptotic field line diffusion) at high z, behavior which is

most clearly seen for R¼ 1.
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For R� 1, the quasilinear limit, all the theories agree

for reasons discussed above in Sec. V. For higher R, the DD

and RBD theories differ by at most 23%, which occurs in the

limit R!1. It is interesting that there is a crossover, with

DRBD > DDD for R 
 13 and DRBD < DDD for R > 13. At

low R, the ODE result is very close to the RBD result. It

begins to deviate noticeably at R � 1. Thereafter, the differ-

ence increases with increasing R, and is 20% at R � 5. With

such confirmation from the ODE result, we conclude that the

RBD theory is slightly superior to the DD theory.

The three theories differ substantially in their ease of

use: RBD provides an explicit formula, while DD gives an

implicit formula, and ODE requires solving a differential

equation. Based on a balance of accuracy and ease of use,

we prefer the use of RBD for values of R up to 5. We also

note that replacing the DD assumption with RBD in the non-

linear guiding center (NLGC) theory38 of the perpendicular

diffusion of energetic charged particles has led to a substan-

tially improved agreement between NLGC theory and direct

simulation results for 2Dþslab turbulence.39

According to our experience in the study of 2Dþslab

turbulence,33 when the ODE results agreed with the DD or

RBD results, those models were in reasonable agreement

with direct computer simulation results. Conversely, when

the ODE results differed substantially from DD and RBD

results, all results, even for the ODE, were in substantial dis-

agreement with computer simulations. Therefore, we recom-

mend that the models presented in this work be considered to

apply for R < 5. Note that indeed, a transverse magnetic

fluctuation model such as the noisy RMHD model used here

would not be expected to apply for physical situations with

R� 1.

Presumably the disagreement among the results from

these models is due to trapping and/or percolation effects,

which have been stated to be inconsistent with Corrsin’s hy-

pothesis. For example, for a mathematically analogous prob-

lem of convective transport in 2D incompressible fluid flow,

the regime of high Kubo number corresponds low fluctuation

frequency x, and it has been argued15 that Bohm diffusion

results13 do not apply in that limit, and that percolative scal-

ing is more appropriate. Similar arguments with regard to the

FLRW stated more strongly and specifically that Corrsin’s

hypothesis leads to Bohm diffusion in the limit of large R,

and for R > 1 Corrsin’s hypothesis is not valid.40,41 Note,

however, that even when Corrsin’s independence hypothesis

per se is violated for a range of z values (e.g., at low z), it is

not clear that theories that employ the hypothesis will neces-

sarily yield inaccurate values of the diffusion coefficient,

e.g., when applied over a wider z range.23 The present work

suggests that the theories presented here should remain valid

up to R � 5, and further work could use computer simula-

tions to verify their range of accuracy.

Regarding the variation of the resulting diffusion with

model parameters, we note that the 2Dþslab system admits

two parameters, whereas the noisy RMHD system has the

Kubo number R as its only parameter. For slabþ2D models,

one can observe clear regimes of quasilinear and Bohm

diffusion and trapping behavior. For the noisy RMHD

system, behavior ranging between quasilinear and Bohm

regimes (related to c; see Figure 2) is characterized by

changes vs. R. We find that c decreases over the range of

applicability of our theories, which is consistent with recent

simulation results for isotropic turbulence that is stretched

in k-space.29

Note that all three theories predict rather similar asymp-

totic diffusion coefficients (see Figure 1), but their results for

the power-law index c are quite different. We conclude that

cðRÞ is quite sensitive to minor details in the functional de-

pendence of D1ðRÞ. We, therefore, caution against detailed

interpretation of cðRÞ, and for applications it is more relevant

to consider D1ðRÞ. In any case, it is clear from Figure 1 that

for R � 1 the quasilinear expression extrapolated from low R
has a large disagreement with the more detailed analytic the-

ories presented in this work. We propose that an explanation

of the FLRW requires another type of diffusion, which we

consider to be Bohm diffusion, combined with quasilinear

diffusion.

The problem of the FLRW in RMHD has proven to be

equally as rich as the slabþ2D model in its range of allowed

behavior. The RMHD model, like the 2Dþslab model, is a

three dimensional model, with no ignorable coordinate. Fur-

thermore, it is closely related to models that are widely

employed in solar physics and astrophysics, so that the

results for the homogeneous RMHD FLRW may have broad

application. Notably, the problem of field line separation in

weakly three dimensional transverse turbulence, as well as

several other problems related to magnetic connectivity,42

may be addressed conceptually and analytically, based on

the FLRW results derived here. Finally, we note that RMHD

is a dynamical model, and therefore the results derived here

for the magnetostatic noisy RMHD field can provide a useful

baseline for further exploration of dynamical, anisotropic

MHD turbulence.

ACKNOWLEDGMENTS

This research has been supported in part by the Thailand

Research Fund, by the US National Science Foundation under

the Solar-Terrestrial research program (AGS-1063439) and

the SHINE program (AGS-1156094), and by NASA under the

Heliospheric Theory Program (NNX11AJ44G) and the Solar

Probe Plus ISIS Project.

1J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968).
2M. B. Isichenko, Plasma Phys. Controlled Fusion 33, 795 (1991).
3M. B. Isichenko, Plasma Phys. Controlled Fusion 33, 809 (1991).
4J. Giacalone, J. R. Jokipii, and J. E. Mazur, Astrophys. J. 532, L75

(2000).
5D. Ruffolo, W. H. Matthaeus, and P. Chuychai, Astrophys. J. 597, L169

(2003).
6C. Pei, J. R. Jokipii, and J. Giacalone, Astrophys. J. 641, 1222 (2006).
7G. Zimbardo and P. Veltri, Phys. Rev. E 51, 1412 (1995).
8H. R. Strauss, Phys. Fluids 19, 134 (1976).
9D. Montgomery, Phys. Scr. T2A, 83 (1982).

10G. P. Zank and W. H. Matthaeus, J. Plasma Phys. 48, 85 (1992).
11W. H. Matthaeus, S. Ghosh, S. Oughton, and D. A. Roberts, J. Geophys.

Res. 101, 7619, doi:10.1029/95JA03830 (1996).
12J. R. Jokipii, Astrophys. J. 146, 480 (1966).
13B. B. Kadomtsev and O. P. Pogutse, in Proceedings of the Seventh Interna-

tional Conference on Plasma Physics and Controlled Nuclear Fusion

Research 1978 (IAEA, Vienna, 1979), p. 649.

012308-9 D. Ruffolo and W. H. Matthaeus Phys. Plasmas 20, 012308 (2013)

http://dx.doi.org/10.1103/PhysRevLett.21.44
http://dx.doi.org/10.1088/0741-3335/33/7/004
http://dx.doi.org/10.1088/0741-3335/33/7/005
http://dx.doi.org/10.1086/312564
http://dx.doi.org/10.1086/379847
http://dx.doi.org/10.1086/427161
http://dx.doi.org/10.1103/PhysRevE.51.1412
http://dx.doi.org/10.1063/1.861310
http://dx.doi.org/10.1088/0031-8949/1982/T2A/009
http://dx.doi.org/10.1017/S002237780001638X
http://dx.doi.org/10.1029/95JA03830
http://dx.doi.org/10.1029/95JA03830
http://dx.doi.org/10.1086/148912


14J. B. Taylor and B. McNamara, Phys. Fluids 14, 1492 (1971).
15A. V. Gruzinov, M. B. Isichenko, and Ya. L. Kalda, Sov. Phys. JETP

70(2), 263 (1990).
16G. I. Taylor, Proc. Lond. Math. Soc. 20, 196 (1922).
17M. S. Green, J. Chem. Phys. 19, 1036 (1951).
18R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
19W. H. Matthaeus, M. L. Goldstein, and D. A. Roberts, J. Geophys. Res.

95, 20673, doi:10.1029/JA095iA12p20673 (1990).
20J. V. Shebalin, W. H. Matthaeus, and D. Montgomery, J. Plasma Phys. 29,

525 (1983).
21S. Oughton, E. R. Priest, and W. H. Matthaeus, J. Fluid Mech. 280, 95

(1994).
22W. H. Matthaeus, P. C. Gray, D. H. Pontius, Jr., and J. W. Bieber, Phys.

Rev. Lett. 75, 2136 (1995).
23M. C. Ghilea, D. Ruffolo, P. Chuychai, W. Sonsrettee, A. Seripienlert, and

W. H. Matthaeus, Astrophys. J. 741, 16 (2011).
24S. Corrsin, in Advances in Geophysics, v. 6, Atmospheric Diffusion and

Air Pollution, edited by F. Frenkel and P. Sheppard (Academic, New

York, 1959), p. 161.
25Y. Salu and D. C. Montgomery, Phys. Fluids 20, 1 (1977).
26M. Ottaviani, Europhys. Lett. 20, 111 (1992).
27J.-D. Reuss and J. H. Misguich, Phys. Rev. E 54, 1857 (1996).
28G. Zimbardo, P. Veltri, and P. Pommois, Phys. Rev. E 61, 1940 (2000).

29T. Hauff, F. Jenko, A. Shalchi, and R. Schlickeiser, Astrophys. J. 711, 997

(2010).
30S. Oughton, P. Dmitruk, and W. H. Matthaeus, Phys. Plasmas 11, 2214

(2004).
31W. H. Matthaeus, J. W. Bieber, D. Ruffolo, P. Chuychai, and J. Minnie,

Astrophys. J. 667, 956 (2007).
32D. Ruffolo, W. H. Matthaeus, and P. Chuychai, Astrophys. J. 614, 420

(2004).
33A. Snodin, D. Ruffolo, and W. H. Matthaeus, Astrophys. J. 762, 66 (2013).
34P. G. Saffman, Appl. Sci. Res. A11, 245 (1962).
35T. S. Lundgren and Y. B. Pointin, Phys. Fluids 19, 355 (1976).
36H.-D. Wang, M. Vlad, E. Vanden Eijnden, F. Spineanu, J. H. Misguich,

and R. Balescu, Phys. Rev. E 51, 4844 (1995).
37A. Shalchi and I. Kourakis, Phys. Plasmas 14, 092903 (2007).
38W. H. Matthaeus, G. Qin, J. W. Bieber, and G. Zank, Astrophys. J. 590,

L53 (2003).
39D. Ruffolo, T. Pianpanit, W. H. Matthaeus, and P. Chuychai, Astrophys. J.

747, L34 (2012).
40M. Vlad, F. Spineanu, J. H. Misguich, and R. Balescu, Phys. Rev. E 58,

7359 (1998).
41M. Neuer and K. H. Spatschek, Phys. Rev. E 74, 036401 (2006).
42A. F. Rappazzo, W. H. Matthaeus, D. Ruffolo, S. Servidio, and M. Velli,

Astrophys. J. 758, L14 (2012).

012308-10 D. Ruffolo and W. H. Matthaeus Phys. Plasmas 20, 012308 (2013)

http://dx.doi.org/10.1063/1.1693635
http://dx.doi.org/10.1112/plms/s2-20.1.196
http://dx.doi.org/10.1063/1.1748449
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1029/JA095iA12p20673
http://dx.doi.org/10.1017/S0022377800000933
http://dx.doi.org/10.1017/S0022112094002867
http://dx.doi.org/10.1103/PhysRevLett.75.2136
http://dx.doi.org/10.1103/PhysRevLett.75.2136
http://dx.doi.org/10.1088/0004-637X/741/1/16
http://dx.doi.org/10.1063/1.861690
http://dx.doi.org/10.1209/0295-5075/20/2/004
http://dx.doi.org/10.1103/PhysRevE.54.1857
http://dx.doi.org/10.1103/PhysRevE.61.1940
http://dx.doi.org/10.1088/0004-637X/711/2/997
http://dx.doi.org/10.1063/1.1705652
http://dx.doi.org/10.1086/520924
http://dx.doi.org/10.1086/423412
http://dx.doi.org/10.1088/0004-637X/762/1/66
http://dx.doi.org/10.1063/1.861482
http://dx.doi.org/10.1103/PhysRevE.51.4844
http://dx.doi.org/10.1063/1.2776905
http://dx.doi.org/10.1086/376613
http://dx.doi.org/10.1088/2041-8205/747/2/L34
http://dx.doi.org/10.1103/PhysRevE.58.7359
http://dx.doi.org/10.1103/PhysRevE.74.036401
http://dx.doi.org/10.1088/2041-8205/758/1/L14

