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ABSTRACT

The problem of the separation of random magnetic field lines in collisionless astrophysical plasmas is
closely related to the problem of the magnetic field line random walk and is highly relevant to the transport of
charged particles in turbulent plasmas. In order to generalize treatments based on quasi-linear theory, here we
examine the separation of nearby magnetic field lines by employing a nonperturbative technique based on the
Corrsin independence hypothesis. Specifically, we consider the case of two-component turbulence in which
the magnetic field fluctuations are a mixture of one-dimensional (slab) and two-dimensional ingredients, as a
concrete example of anisotropic turbulence that provides a useful description of turbulence in the solar wind.
We find that random field trajectories can separate in general through three regimes of the behavior of the
running diffusion coefficient: slow diffusive separation, an intermediate regime of superdiffusion, and fast
diffusive separation at large distances. These features are associated with the gradual, exponential diver-
gence of field lines within islands of two-dimensional turbulence, followed by diffusive separation at long dis-
tances. The types of behavior are determined not by the Kubo number but rather a related ratio that takes
the turbulence anisotropy into account. These results are confirmed by computer simulations. We discuss
implications for space observations of energetic charged particles, including ‘‘dropouts’’ of solar energetic
particles.

Subject headinggs: diffusion — magnetic fields — Sun: particle emission — turbulence

1. INTRODUCTION

The random walk of individual magnetic field lines relative
to the mean magnetic field and the rate of separation of nearby
field lines are key issues in defining the topology and structure
of random magnetic fields in magnetohydrodynamic (MHD)
turbulence. The statistics of such a random walk are often
central to understanding the diffusion of energetic charged
particles perpendicular to the mean magnetic field in astro-
physical plasmas (Jokipii 1966; Jokipii & Parker 1968). Per-
pendicular diffusion is an important component of the solar
cycle–dependent modulation of Galactic cosmic rays (Parker
1965; Moraal 1976; Cane et al. 1999; Reinecke et al. 2000).
Determining the rate of perpendicular diffusion of energetic
particles in the heliosphere may be crucial in distinguishing
between two popular models for explaining the dramatic
observations by the Ulysses spacecraft of apparent corotating
interaction region (CIR) modulation of Galactic and anoma-
lous cosmic rays (Kunow et al. 1995; McKibben et al. 1995;
Simpson et al. 1995) and acceleration of low-energy electrons
and ions (Sanderson et al. 1995; Simnett et al. 1995) at higher
heliospheric latitudes than where CIRs were observed, i.e., the
models of Kóta & Jokipii (1995) and Fisk (1996). Other issues
of energetic particle transport in the heliosphere may rely on
details of perpendicular diffusion, such as the poor access of
Galactic cosmic rays into a coronal mass ejection (Cane et al.
1994) that can account for the deep minima of Forbush de-
creases, or energetic particle acceleration at a nearly perpen-

dicular shock (Jokipii 1987; Jokipii et al. 1993; Kirk et al.
1996; Jones et al. 1998).

On the other hand, there are also situations in which the
behavior of distributions of energetic charged particles might be
better understood in terms of the mutual separation offield lines
than by the randomwalk of individual field lines (Jokipii 1973).
Indeed, for an initially concentrated distribution of particles
(assumed to be following field lines) to spread in the directions
perpendicular to the mean magnetic field requires that the field
lines threading the distribution mutually separate; a correlated
wandering of nearby field lines would just displace the particle
distribution without distorting it. Figure 1 illustrates the random
walk perpendicular to the mean field (�x), the displacement
between nearby field lines (X � x2 � x1), and their separation
�X � X � X0. In the extreme case in which two turbulent field
lines are completely decorrelated, the mean squared separation
would be twice the mean squared random walk. On the other
hand, two nearby field lines could follow highly correlated
trajectories with a mutual separation much lower than the dis-
placement from the mean field, as represented by the lower two
field lines in Figure 1. Therefore, field line separation is a
sensitive probe of the dissimilarity of nearby field lines and the
transverse structure of magnetic turbulence.
One application of calculating the field line separation is

to address the long-recognized phenomenon of ‘‘channeling,’’
or sudden changes in the fluxes of solar energetic particles
(SEPs), which has been revisited by recent, detailed mea-
surements of Mazur et al. (2000), who refer to such events as
‘‘dropouts.’’ These are presumably due to sudden changes in
magnetic connection to a spatially localized injection region.
This picture requires that field lines that are adjacent when
near the Sun remain confined to localized flux tubes out to
distances �1 AU along the mean field.
In particular, Mazur et al. (2000) identify episodes of dra-

matic SEP intensity changes on an average timescale of 3 hr,
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corresponding to a spatial (longitudinal) scale of 0.03 AU.
Giacalone et al. (2000) point out that if there is effectively no
turbulent random walk, one can understand dropouts in terms
of the field line random walk due to photospheric motions.
This leads to the question, Why is there no apparent turbulent
random walk? There certainly is turbulence in the interplan-
etary medium. One might expect a longitudinal diffusion of
field lines (due to the two-dimensional component of solar
wind fluctuations) to a scale of (�x)rms ¼ 2D?�zð Þ1=2, where
the diffusion coefficient of the turbulent random walk is
D? ¼ (b=B0)(k̃=

ffiffiffi
2

p
) (Matthaeus et al. 1995) and k̃ is the

‘‘ultrascale’’ or ‘‘mesoscale,’’ inferred from observations to be
�0.2 AU (Matthaeus et al. 1999). For a typical rms turbulent
magnetic field of one-half the mean field, b ¼ 0:5B0, the
expected longitudinal scale of the turbulent random walk is
0.37 AU, which would wash out the observed dropouts. One
possible explanation might be that the separation of nearby
field lines, which controls the spread of particles from a small
injection region near the Sun, could be much slower than the
turbulent random walk relative to the mean field, as illustrated
in Figure 1. This issue, which is discussed again in x 6, is just
one example of an astrophysical problem related to the sep-
aration of nearby magnetic field lines.

The theory of the separation of adjacent field lines has
been examined by Jokipii (1973) and Zimbardo et al. (1984).
This issue has been recognized as relevant to physical pro-
cesses in fusion plasmas (e.g., Rechester & Rosenbluth 1978;
Kadomtsev & Pogutse 1979; Isichenko 1991a, 1991b), the
solar corona (e.g., Similon & Sudan 1989), energetic particle
transport in the heliosphere (ErdIs et al. 1997, 1999), cosmic-
ray transport and acceleration in the Galaxy (Barge et al. 1984;
Chandran 2000), and thermal conduction in galaxy clusters
(Maron et al. 2004). Much attention has been devoted in the
past to description of the exponential separation of field lines
(Rechester & Rosenbluth 1978; Kadomtsev & Pogutse 1979)
in the regime of small separation before the field lines undergo
independent random walks, because of the relationship of
that phenomenon to mixing in ergodic theory (Zaslavsky &
Chirikov 1972) and stochastic instability in general. In the
present paper we are mainly concerned with regimes of diffu-
sive behavior, although we comment on the relationship be-
tween these two views of field line separation. The length scale

along the mean field over which field lines separate by a per-
pendicular coherence scale is relevant to incompressible MHD
turbulence (Goldreich & Sridhar 1997; Lithwick & Goldreich
2001).

Apart from the observational issues discussed above, there
are also a number of theoretical issues that provide motiva-
tion for reconsidering field line separation in a ‘‘realistic’’ (or,
at least, observationally motivated) three-dimensional model
magnetic field. For example, one feature of turbulence struc-
ture that has become recognized in recent years (Jones et al.
1998) is that models that are one-dimensional (‘‘slab’’) or that
admit even one ignorable coordinate give rise to pathological
statistical representations of particle transport. There are also
indications that the stochastic instability of field lines has a
character in models having small numbers of coherent modes
that contrasts strongly with its character in a continuum of
incoherent modes (Rax & White 1992). It is reasonable to
anticipate that such differences would affect the onset and
nature of diffusion. One is cautioned, then, that some prop-
erties that emerge from the simpler models of field line sep-
aration should not be taken as rigorous, especially in the light
of better understood properties from observations and turbu-
lence simulations. An example is the rather general identifi-
cation of the correlation scale with the exponential separation
scale (e.g., Sagdeev et al. 1988), although this is not a well-
understood relationship (Rechester & Rosenbluth 1978).
Similarly, the identification of the correlation scale of mag-
netic fluctuations with the correlation scale of the spatial
gradients of the fluctuations ( Isichenko 1991a) is manifestly
incorrect for turbulence having distinct inner and outer scales.
Moreover, for homogeneous turbulence, the correlation scale
of derivatives, i.e., the Taylor microscale, may differ from
the fluctuation correlation scale by orders of magnitude
(Batchelor 1953). This difference is at least 3 or 4 orders of
magnitude in the solar wind (Matthaeus & Goldstein 1982).
Finally, we note that the realm of applicability of the pertur-
bative quasi-linear (QLT) limit is often expressed (Isichenko
1991a) in terms of a dimensionless (Kubo) number R ¼
(b=B0)(kk=k?), where kk and k? are, respectively, correlation
scales in the directions parallel to and perpendicular to the
large-scale mean magnetic field B0. QLT is supposed to be
accurate when RT1. While qualitatively correct, we can see
that a criterion based solely on R cannot be complete, in view
of the fact that the contribution to field line diffusion due
to a quasi–two-dimensional component of the turbulence
(Matthaeus et al. 1995) depends on not k? but a distinct scale
(the ‘‘ultrascale’’; see below) that characterizes large-scale
transverse magnetic structure.

In the following sections we reexamine the theory of the
separation of adjacent field lines in astrophysical MHD tur-
bulence in light of improved understanding of solar wind
turbulence in recent years (Matthaeus et al. 1990; Bieber et al.
1994). We consider field line separation in two-component
turbulence consisting of a slab component that varies only
along the mean field, as well as a two-dimensional component
that varies only in the two transverse directions, which has
been shown to serve as a useful model of solar wind turbu-
lence (Bieber et al. 1996). This turbulence model can also be
viewed as a concrete example that is representative of aniso-
tropic turbulence in general, i.e., turbulence that varies dif-
ferently along or perpendicular to the mean magnetic field. We
proceed using a nonperturbative approach similar to that
which has been used previously (Matthaeus et al. 1995; Gray

Fig. 1.—Illustration of the magnetic field line random walk perpendicular
to the mean field (�x), displacement between nearby field lines (X � x2 � x1),
and their separation (�X � X � X0). The present work calculates the mean
squared separation vs. distance along the mean field.
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et al. 1996) to examine the field line random walk. The ana-
lytic results are verified by computer simulations. We then
consider their astrophysical implications.

2. 2D+SLAB TURBULENCE

In the 2D+slab model of magnetic turbulence, we assume

B ¼ B0 þ b(x; y; z); ð1Þ

where the mean field B0 is constant. We also use

B0 ¼ B0ẑ; b ? ẑ; ð2Þ

and the fluctuating field, of mean zero, is given by

b ¼ b2D(x; y)þ bslab(z): ð3Þ

For brevity, we refer to a quantity such as hb2i as the magnetic
energy of the fluctuations. In general, we can write

b2D(x; y) ¼ :< ½a(x; y) ẑ�; ð4Þ

where aẑ can be interpreted as a vector potential for the
two-dimensional component of turbulence or as a poloidal
(transverse) flux function, in the sense that

R 2
1
b2D = n̂d‘ ¼

a(2)� a(1), where d‘ is the line element along any curve
connecting points 1 and 2 and n̂ is the two-dimensional nor-
mal to that curve. Note that any large-scale gradient in a
would violate the assumption that the mean magnetic field is
uniform and along the ẑ-direction. Thus, a(x; y) can be viewed
as a random function, fluctuating about a constant mean value,
taken to be zero for convenience, with a well-behaved power
spectrum A(kx; ky).

This form of magnetic turbulence was motivated by an
analysis of magnetic fluctuations in the solar wind (Matthaeus
et al. 1990). Note that with b ? ẑ, we have Bz � B0, so in this
model it is impossible for a magnetic field line to backtrack in
the z-direction, and the z-coordinate uniquely specifies a point
on a magnetic field line. This permits a direct analogy between
the perpendicular motion of a magnetic field line versus z
and the trajectory of a fluid element in incompressible, two-
dimensional fluid dynamics versus time.
Figure 2 illustrates the flux function a(x; y) and the motion

of field lines for a realization of such 2D+slab turbulence with
an 80 : 20 ratio of two-dimensional to slab component ener-
gies, as found in the solar wind (Bieber et al. 1994, 1996). In
the absence of a slab component, the 2D-turbulent field lines
would move along curves of constant a, since equation (4)
indicates that b2D ? :a. (This is analogous to Hamiltonian
flow, upon the substitutions a ! H and z ! t.) In three di-
mensions, such field lines are constrained to flux tubes that
are ‘‘cylinders’’ in the mathematical sense of surfaces of con-
stant a(x; y). What makes 2D+slab turbulence interesting is
that the slab component imposes random perturbations on the
field line motion, leading to mixing of field lines and wan-
dering to regions of different a(x; y) (see also Matthaeus et al.
1995). This is illustrated in Figure 2, where the left panel shows
an initial shading according to a realization of a(x; y) and the
right panel shows how that shading is convected along random
field lines (the distance z along the mean field increases to the
right). In the absence of slab turbulence, the shading would be
constant with z as field lines stick to the same value of a. In
contrast, Figure 2 illustrates how the slab turbulence ‘‘mixes’’
field lines of different initial a-values. It is interesting that
some regions exhibit strong mixing and spreading, while in
others the initial shading is clearly visible in the same location,
indicating that a flux tube structure is maintained over this

Fig. 2.—Field line motion in a realization of 2D+slab turbulence. In the left part of the figure, the shading indicates the initial value of a(x; y), the potential
function for the two-dimensional component. In the right part, that initial shading is convected along random field lines. The mean field direction, ẑ, is to the right. It
can be seen that some regions exhibit strong mixing, while others are still organized as distinct flux tubes.
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distance, a phenomenon that is discussed further by Ruffolo
et al. (2003).

3. RANDOM WALK OF A SINGLE FIELD LINE

It is instructive to first review the diffusive random walk of a
single magnetic field line in the 2D+slab model of turbulence.
While yielding the same result as Matthaeus et al. (1995) in the
long-distance limit, the present calculation allows us to deter-
mine its range of applicability and employs a different form of
Corrsin’s hypothesis, which we also use in the calculation of
field line separation.

Following Jokipii & Parker (1969) and Jokipii (1973), we
start with the defining equation of a magnetic field line,

dx

Bx

¼ dy

By

¼ dz

Bz

; ð5Þ

and express the change in, say, the x-coordinate of a field line
over a distance �z along the mean magnetic field as

�x � x(�z)� x(0) ¼ 1

B0

Z �z

0

bx½x(z0); y(z0); z0� dz0: ð6Þ

This quantity is illustrated in Figure 1. The ensemble average
of (�x)2 is then given by

h�x2i¼ 1

B2
0

Z �z

0

Z �z

0

hbx½x(z0); y(z0); z0�

; bx½x(z00); y(z00); z00�i dz0 dz00

¼ 1

B2
0

Z �z

0

Z �z

0

hbx(x0; y0; z0)bx(x00; y00; z00)i dz0 dz00; ð7Þ

where we introduce the notation x0 for x(z0), etc. We can also
write

h�x2i¼ 1

B2
0

Z �z

0

Z �z�z 0

�z 0
hbx(x0; y0; z0)

; bx(x
00; y00; z0 þ�z0)i d�z0dz0; ð8Þ

where�z0 � z00 � z0, and with the assumption of homogeneity,

h�x2i ¼ 1

B2
0

Z �z

0

Z �z�z 0

�z 0
hbx(0; 0; 0)

; bx(�x0;�y0;�z0)i d�z0 dz0; ð9Þ

where �x0 � x00 � x0 and �y0 � y00 � y0. This equation de-
scribes the random walk of a single field line, and the quan-
tities z0, z00, �z0, and �x0 are illustrated in Figure 3.

Before proceeding further with the mathematical derivation,
it is interesting to motivate the Matthaeus et al. (1995) result.
Physically, a random walk should give diffusive behavior,
with

h�x2i ¼ 2D?�z; ð10Þ

D? � dx=dzð Þ2
D E

‘ � hb2xi
B2
0

‘; ð11Þ

for a ‘‘mean free distance’’ ‘. In terms of equation (9), bx at z
0

and z00 decorrelate over some distance �z0 � ‘, so the inner
integral is of order 2hb2xi‘, the outer integral of order 2hb2xi‘�z,

and the diffusion coefficient as given above. For slab turbu-
lence, one might estimate ‘ to be the correlation length ‘c:

Dslab
? � hb2xi

B2
0

‘c; ð12Þ

a well-known result to be derived shortly in detail. For two-
dimensional turbulence, decorrelation takes place for h�x2i �
k̃2, at some perpendicular distance k̃, which Matthaeus et al.
(1995) refer to as the ‘‘ultrascale’’ (to be precisely defined
later, in eq. [37]). Then

‘ � k̃2

2D?
; D? � hb2i

B2
0

k̃2

2D?
ð13Þ

which has an interesting implicit form. This leads to

D2D
? � k̃ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffi
hb2i

p
B0

; ð14Þ

which depends on the rms level of fluctuation instead of the
mean square. From the detailed mathematical derivation, it
is seen that the ultrascale k̃ can be identified with the mean
squared fluctuation of a(x; y) divided by that of b2D(x; y). Note
that this result (eq. [14]) refers to two-component turbulence
in the limit of vanishing slab fluctuations. This limit is sin-
gular because for pure two-dimensional turbulence, field lines
on closed flux surfaces remain confined and formally do not
undergo diffusion.

Continuing with the derivation, note that Lagrangian cor-
relation functions such as hbx(x0; y0; z0)bx(x00; y00; z00)i differ from
standard (Eulerian) correlation functions; in a Lagrangian en-
semble average over representations of the magnetic turbu-
lence, the positions themselves depend on the representation.
However, it is possible to separate the statistics of the magnetic
fluctuations from those of individual trajectories when the two
positions are displaced by more than a coherence length in the
parallel or perpendicular direction. (Over smaller distances this
is not necessarily accurate, e.g., straight line trajectories, with
one spatial distribution, are associated with higher magnetic
correlation than bending trajectories, which have a different
spatial distribution.) This approximation, known as Corrsin’s
independence hypothesis (Corrsin 1959; Salu & Montgomery
1977; see also McComb 1990) can be expressed either in wave-
vector space (as in Matthaeus et al. 1995) or in position space.
Computer simulations have been used to verify the hypothesis
for the random walk calculation (Gray et al. 1996) and are also
used to verify its validity in the present work.

X

z'
z"

 z

X0

∆ z'

∆ x'

∆

x (z)1

x (z)2

Fig. 3.—Schematic of two random field lines and definition of various
quantities.
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Here we demonstrate the implementation of Corrsin’s hy-
pothesis in position space. We consider the Lagrangian cor-
relation function to be the Eulerian correlation function, Rxx �
hbx(0; 0; 0)bx(x; y; z)i, weighted by the conditional probabili-
ties of finding �x0 and �y0 after a given �z0:

hbx(0; 0; 0)bx(�x0(�z0);�y0(�z0);�z0)i

¼
Z 1

�1

Z 1

�1
Rxx(�x0;�y0;�z0)

; P(�x0j�z0)P(�y0j�z0) d�x0 d�y0;

ð15Þ

h�x2i ¼ 1

B2
0

Z � z

0

Z � z�z 0

�z 0

Z 1

�1

Z 1

�1
Rxx(�x0;�y0;�z0)

; P(�x0j�z0)P(�y0j�z0) d�x0 d�y0 d�z0 dz0;

ð16Þ

where we invoke the statistical independence of �x0 and �y0.
Another key assumption is that the conditional probability

distributions are Gaussian,

P(�x0j�z0) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2��2

x

p exp � (�x0)2

2�2
x

� �
;

P(�y0j�z0) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2��2

y

q exp � (�y0)2

2�2
y

" #
: ð17Þ

Furthermore, we assume that the variances �2
x ¼ h�x2i and

�2
y ¼ h�y2i are diffusive and statistically axisymmetric in the

sense that

h�x2i ¼ h�y2i ¼ 2D?j�z0j; ð18Þ

whereD? is the desired perpendicular diffusion coefficient. The
distributions in equation (17) guarantee the statistical inde-
pendence assumed in equation (16). For slab or two-component
turbulence, these assumptions are accurate for sufficiently large
�z, by the central limit theorem. A check on the validity of the
result is that h�x2i should be proportional to �z in that limit,
and as �z decreases, violation of that proportionality indicates
the limit of validity of the diffusion approximation. For exam-
ple, at small �z, over which b is nearly constant, there is a
‘‘free-streaming’’ regime in which field lines have nearly
straight-line trajectories and h�x2i / (�z)2.

So far, our calculation of h�x2i has not yet specified the
nature of the magnetic turbulence. Now let us focus on axi-
symmetric, two-component 2D+slab turbulence (eqs. [1]–[3]):

Rxx(�x0;�y0;�z0) ¼ Rslab
xx (�z0)þ R2D

xx (�x0;�y0); ð19Þ

or in terms of power spectra,

Rslab
xx (�z0) ¼ 1ffiffiffiffiffiffi

2�
p

Z 1

�1
Pslab
xx (kz)e

�ik z� z 0 dkz;

R2D
xx (�x0;�y0 ) ¼ 1

2�

Z 1

�1

Z 1

�1
P 2D
xx (kx; ky)e

�ikx�x 0

; e�iky�y 0 dkx dky: ð20Þ

Then, substituting equations (19) and (20) into equation (16)
and separating slab and two-dimensional contributions, we have

h�x2islab ¼
1ffiffiffiffiffiffi
2�

p 1

B2
0

Z 1

�1
Pslab
xx (kz)

Z �z

0

Z �z�z 0

�z 0

Z 1

�1
P(�x0j�z0) d�x0

� �

;

Z 1

�1
P(�y0j�z0) d�y0

� �
e�ikz�z 0 d�z0 dz0 dkz; ð21Þ

h�x2i2D¼
1

2�

1

B2
0

Z 1

�1

Z 1

�1
P2D
xx (kx; ky)

;

Z �z

0

Z �z�z 0

�z 0

Z 1

�1
e�ikx�x 0P(�x0j�z0) d�x0

� �

;

Z 1

�1
e�iky�y 0P(�y0j�z0)d�y0

� �
d�z0dz0dkxdky:

ð22Þ

For the slab component of turbulence, in which Rslab
xx does not

depend on �x0 or �y0, the conditional probabilities simply
integrate to 1, yielding

h�x2islab ¼
1ffiffiffiffiffiffi
2�

p 1

B2
0

;

Z 1

�1

Z �z

0

Z �z�z 0

�z 0
Pslab
xx (kz)e

�ikz�z 0d�z0 dz0 dkz:

ð23Þ

For the two-dimensional component, we haveZ 1

�1
e�ikx � x 0

P(�x0j�z0) d�x0

¼
Z 1

�1

e�ik x� x 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�D?j�z0j

p exp � (�x0) 2

4D?j�z0j

� �
d�x0

¼ e�D?k
2
x j� z 0 j; ð24Þ

and with the analogous formula for the �y0 integral, we obtain

h�x2i2D ¼ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

Z � z

0

Z � z�z 0

�z 0
P2D
xx (kx; ky)

; e�D?(k2xþk2y )j� z 0 j d�z0 dz0 dkx dky: ð25Þ

So far this derivation is equivalent to that of Matthaeus et al.
(1995), except that we consider the exact limits of the �z0

integration, not approximating the limits as �1.
Now we may carry out the integration over �z0 and z0 in

equations (23) and (25), to obtain

h�x2islab ¼
1ffiffiffiffiffiffi
2�

p 1

B2
0

Z 1

�1

2½1� cos (kz�z)�
k2z

Pslab
xx (kz) dkz;

ð26Þ

h�x2i2D ¼ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

2�zP2D
xx (kx; ky)

D?(k2x þ k2y )

; 1þ e�D?(k2xþk2y )�z � 1

D?(k2x þ k2y )�z

" #
dkx dky

¼ 1

2�

1

B2
0

2�z

D?

Z 1

�1

Z 1

�1

P2D
xx (kx; ky)

k2?

; 1� g(D?k
2
?�z)

� �
dkx dky; ð27Þ
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where k2? � k2x þ k2y , and g(u) � (1� e�u)=u behaves as a
low-pass filter; i.e., g(u) � 1 for uT1 and monotonically
declines to zero as u ! 1. We then obtain an expression for
the perpendicular diffusion coefficient for a single field line,
D? � h�x2i=(2�z):

D? ¼ 1ffiffiffiffiffiffi
2�

p 1

B2
0

Z 1

�1

½1� cos (kz�z)�
k2z�z

Pslab
xx (kz) dkz þ

1

2�

1

B2
0

1

D?

;

Z 1

�1

Z 1

�1

P2D
xx (kx; ky)

k2?
1� g(D?k

2
?�z)

� �
dkx dky: ð28Þ

Note that this formula is implicit in the sense that D? appears
on both sides of the equation and nonperturbative in the sense
that it applies for any Pslab

xx and P2D
xx . Note also that a diffusion

coefficient is a valid concept only when h�x2i / �z, i.e.,
when this expression for D? is constant in �z. Next, we show
that this is indeed the case for sufficiently large �z.

Equation (28) can be interpreted further when we consider
that most observed power spectra of magnetic turbulence have
power concentrated below and in the vicinity of a certain scale
k0, which is associated with a coherence scale ‘ ¼ 1=k0. Now
if there is no two-dimensional component, we have

Dslab
? ¼ 1ffiffiffiffiffiffi

2�
p 1

B2
0

Z 1

�1

½1� cos (kz�z)�
k2z�z

Pslab
xx (kz) dkz: ð29Þ

Note that as �z ! 1,

1� cos (kz�z)

k2z�z
! ��(kz) ð30Þ

and

Dslab
? ¼

ffiffiffiffi
�

2

r
Pslab
xx (0)

B2
0

: ð31Þ

This dependence, originally derived by Jokipii & Parker
(1968), is approximately true for large �z, i.e., �z3 ‘z ¼
1=k0z, where ‘z is a parallel coherence length, provided that
Pslab
xx is roughly constant for kzTk0z. Equation (31) can also

be expressed as

Dslab
? ¼ hb2xi

slab

B2
0

‘c ð32Þ

for the correlation length ‘c, as physically motivated earlier
(eq. [12]).

Next, considering the limit of vanishing slab turbulence, we
have D? ¼ D2D

? , and

D2D
?

� �2¼ 1

2�

1

B2
0

Z 1

�1

Z 1

�1

P2D
xx (kx; ky)

k2?

; 1� g D?k
2
?�z

� �� �
dkx dky: ð33Þ

(A note on notation: D2D
? refers to the perpendicular random

walk in the limit of no slab turbulence, while h�x2i2D refers to
the contribution of two-dimensional turbulence even if slab
turbulence is present.) Since g acts as a low-pass filter, 1� g
acts as a high-pass filter, which is close to 1 except that it
becomes small within a ‘‘hole’’ in (kx; ky) space, for k?P
1=(D?�z)½ �1=2. As �z ! 1, the width of this hole decreases,
and our expression for D2D

? is equivalent to that of Matthaeus

et al. (1995). The effect of the hole around k? ¼ 0 is negligible
if its size is much smaller than k0?, so the expression

D2D
? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�

1

B2
0

Z 1

�1

Z 1

�1

P2D
xx (kx; ky)

k2?
dkx dky

s
ð34Þ

is valid for k 2
0?D?�z31, i.e., h�x2i3 ‘?, for perpendicular

excursions greater than the scale ‘? ¼ 1=k0?. Referring to the
flux function (vector potential) a(x; y) for the two-dimensional
turbulence (see x 2), we have

P2D
xx (kx; ky) ¼ k2y A(k?) and P2D

yy (kx; ky) ¼ k2x A(k?); ð35Þ

where A(k?), the (axisymmetric) power spectrum of a(x; y), is
defined as the Fourier transform of the correlation function
ha(0; 0)a(x; y)i. Then P2D

xx þ P2D
yy ¼ k2?A, and assuming axisym-

metry, the integral of P2D
xx =k

2
? is one-half that of A. Thus, we can

relate D2D
? to the variance of a(x; y):

D2D
? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�

1

2B2
0

Z 1

�1

Z 1

�1
A(k?) dkx dky

s
¼

ffiffiffiffiffiffiffiffiffi
ha2i
2B2

0

s
; ð36Þ

and finally we can define the ‘‘ultrascale’’

k̃ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ha2i
hb2i2D

s
; ð37Þ

again yielding a form that was physically motivated earlier
(eq. [14]):

D2D
? ¼ k̃ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hb2i2D

q
B0

: ð38Þ

By way of an analogy with hydrodynamic correlation functions
(Batchelor 1953), we see that k̃ is the length associated with
the curvature of the haa0i correlation at zero separation (see
eq. [37]) and therefore may be thought of as the Taylor micro-
scale, or ‘‘inner scale,’’ of the haa0i correlation function.

In summary, substituting equations (29) and (33) into
equation (28) gives

D? ¼ Dslab
? þ

D2D
?

� �2
D?

;

D? ¼ Dslab
?
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dslab

?
2

� 	2

þ D2D
?ð Þ2

s
; ð39Þ

for Dslab
? and D2D

? as in equations (32) and (38), respectively
(Matthaeus et al. 1995). We recall that this derivation assumes
a diffusive random walk of the field line, which is valid only in
the regime where h�x2i / �z. This is true of the results for
large �z as given above, and evaluating h�x2i on the basis of
this formula for D? verifies that the range of validity is for
h�x2i1=2 and�z greater than the respective coherence lengths.
This built-in check of the range of validity arises from not
approximating the limits of d�z0 integration as �1. Equation
(28) agrees with previous results while also providing a built-in
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check on the regime of validity. This is important in the fol-
lowing derivation of the field line separation.

4. SEPARATION OF TWO FIELD LINES

4.1. Mathematical Derivvation

In this section, we derive the separation of two magnetic
field lines in two-component 2D+slab turbulence. Now we
consider the lateral coordinates of two different field lines,
x1(z), y1(z), x2(z), and y2(z), expressing the displacement be-
tween them by X � x1� x2 and Y � y1� y2 (see Figs. 1 and
3). Without loss of generality, we consider X (z ¼ 0) ¼ X0 and
Y (z ¼ 0) ¼ 0; i.e., the x-direction is defined to be along the
displacement between the two field lines at z ¼ 0. Then the
separation of the field lines is expressed as the change in
displacement, (�X ;�Y ), as a function of distance �z along
the mean magnetic field.

Note that although the turbulence can be assumed to be sta-
tistically homogeneous and axisymmetric in position space
(x; y), the same cannot be said for displacement space (X ; Y )
(see Fig. 4). In particular, when one considers the correlation
between the two-dimensional component of the turbulent field,
b2D, at the positions of the two field lines, there is a fundamental
difference between a distance much less than ‘? (strong corre-
lation) and a distance much greater than ‘? (weak correlation).
When we define the initial displacement as (X0; 0), then the
separation in the two directions, �X and �Y , need not be

statistically identical, as we show mathematically in this sec-
tion. Physically,�X initially represents a changing distance be-
tween the two field lines, while�Y initially implies a changing
orientation of the displacement (Fig. 4). After a large�z, when
h�X 2i1=2 and h�Y 2i1=2 are both much greater than ‘?, the
separation becomes axisymmetric, with h�X 2i1=2 � h�Y 2i1=2.
Let us first treat�X , the x-separation between two field lines

after a distance �z, which can be expressed as (Jokipii 1973)

�X ¼ �x1��x2 ¼
1

B0

Z �z

0

bx x01; y
0
1; z

0� �
� bx x02; y

0
2; z

0� �� �
dz0:

ð40Þ

Then we have

h�X 2i ¼ 1

B2
0

Z �z

0

Z �z

0



bx x01; y

0
1; z

0� �
bx(x

00
1 ; y

00
1 ; z

00)
�
dz0 dz00

þ 1

B2
0

Z �z

0

Z �z

0



bx(x

0
2; y

0
2; z

0)bx(x
00
2 ; y

00
2 ; z

00)
�
dz0 dz00

� 1

B2
0

Z �z

0

Z �z

0



bx(x

0
1; y

0
1; z

0)bx(x
00
2 ; y

00
2 ; z

00)
�
dz0 dz00

� 1

B2
0

Z �z

0

Z �z

0



bx(x

0
2; y

0
2; z

0)bx(x
00
1 ; y

00
1 ; z

00)
�
dz0 dz00:

ð41Þ

Fig. 4.—Schematic of the separation of field lines, i.e., the change in displacement (X ;Y ) between two field lines for a small initial displacement (X0; 0). (a) Two-
dimensional turbulence is strongly correlated only for displacements within the dashed circle, of less than a perpendicular coherence length ‘?. (b–d ) Distribution of
field line displacements with increasing �z. (b) Slow diffusive separation. (c) Superdiffusive separation. (d ) Fast diffusive separation.
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From the symmetry of ‘‘1’’ and ‘‘2’’ indices, we have

h�X 2i ¼ 2I11 � 2I12; ð42Þ

where we define

I11 ¼ h�x2i ¼ 1

B2
0

Z �z

0

Z �z

0



bx(x

0
1; y

0
1; z

0)bx(x
00
1 ; y

00
1 ; z

00)
�
dz0 dz00;

ð43Þ

I12 ¼
1

B2
0

Z �z

0

Z �z

0



bx(x

0
1; y

0
1; z

0)bx(x
00
2 ; y

00
2 ; z

00)
�
dz0 dz00:

ð44Þ

Since slab fluctuations are independent of x- and y-coordinates,
the contributions of slab turbulence to I11 and I12 are equal.
Thus, the direct slab contributions to h�X 2i cancel, which
makes sense because in pure slab turbulence the two field lines
maintain a constant relative displacement at all z. This leaves
us with

h�X 2i¼2h�x2i2D

� 2

B2
0

Z �z

0

Z �z

0



b2Dx (x01; y

0
1; z

0)b2Dx (x002 ; y
00
2 ; z

00)
�
dz0 dz00:

ð45Þ

An equation for h�Y 2i can be obtained by the substitutions
�X ! �Y , �x ! �y, and bx ! by; with the assumption of
axisymmetry in x and y, we have h�x2i ¼ h�y2i. Note that
although the direct slab contributions have cancelled, the
presence of slab turbulence still affects the results in that both
terms on the right-hand side of equation (45) implicitly in-
volve the total perpendicular diffusion coefficient, D? ¼
h�x2i=(2�z) (including the slab contribution).

The calculation of the field line separation for a given �z
proceeds as in x 3. With the assumption of homogeneity, and
again treating �X first,

h�X 2i¼ 2h�x2i2D�
2

B2
0

Z �z

0

Z �z�z 0

�z 0



b2Dx (0; 0; 0)

; b2Dx �x02�X 0;�y02�Y 0;�z0
� ��

d�z0 dz0:

ð46Þ

Suppressing ‘‘2’’ subscripts and using the simplified notation
X 0 ! X , Y 0 ! Y , and z0 ! z, we have

h�X 2i ¼ 2h�x2i2D � 2

B2
0

Z � z

0

Z � z�z

�z



b2Dx (0; 0; 0)b2Dx

; (�x0 � X ;�y0 � Y ;�z0)
�
d�z0dz:

ð47Þ

Here the displacement between x002 and x01 is expressed in terms
of displacements from a common point x02 as shown in Figure 3.
Then Corrsin’s hypothesis and the assumption of independence
of X and Y displacements allow us to write

h�X 2i ¼ 2h�x2i2D � 2

B2
0

1

2�

Z 1

�1

Z 1

�1
P2D
xx (kx; ky)

;

(Z � z

0

� Z � z�z

�z

Z 1

�1
e�ikx� x 0P(�x0j�z0) d�x0

� 	

;

Z 1

�1
e�iky�y 0P(�y0j�z0) d�y0

� 	
d�z0

�

;

Z 1

�1
eikxX P(X jz) dX

� �

;

Z 1

�1
eikyYP(Y jz) dY

� �
dz

)
dkx dky: ð48Þ

We can evaluate the three square-bracketed expressions in
turn, making use of Gaussian and diffusive conditional prob-
ability distributions. In the first, the �x0 and �y0 integrals
(inside parentheses) can be evaluated as in equation (24), after
which the �z0 integral is straightforward:Z �z�z

�z

Z 1

�1
e�ikx� x 0P(�x0j�z0) d�x0

� 	

;

Z 1

�1
e�iky�y 0P(�y0j�z0) d�y0

� 	
d�z0

¼ 1

D?k
2
?

2� e�D?k
2
?(�z�z) � e�D?k

2
?z

� 

: ð49Þ

For the second bracketed expression, we note that X ¼ X0 þ
�X , where X0 is the initial displacement between the two field
lines. ThenZ 1

�1
eikxX P(X jz) dX ¼ eikxX0

Z 1

�1
eikx�XP(�X jz) d�X

¼ eikxX0e�Dsxk
2
x z; ð50Þ

again making use of equation (24), where Dsx � h�X 2i=(2�z)
is the diffusion coefficient for the x-separation of two magnetic
field lines. The third bracketed expression is similar:Z 1

�1
eikyYP(Y jz) dY ¼ e�Dsyk

2
y z: ð51Þ

We note that defining the initial displacement as (X0; 0) breaks
the axisymmetry of �X and �Y (see also Fig. 4), so Dsx and
Dsy may be distinct.

Substituting equations (27), (35), and (49)–(51) into equa-
tion (48) and performing the z-integration, we obtain a com-
plete expression for h�X 2i:

h�X 2i ¼ 8�z2

h�x2i
1

2�B2
0

Z 1

�1

Z 1

�1

k2y A(k?)

k2?

(
1� g

h�x2ik2?
2

� eikxX0

"
g

h�X 2ik2x
2

þ
h�Y 2ik2y

2

 !

� 1

2
g0

h�X 2ik2x
2

þ
h�Y 2ik2y

2
;
h�x2ik2?

2

 !

� 1

2
g

h�X 2ik2x
2

þ
h�Y 2ik2y

2
þ h�x2ik2?

2

 !#)
dkxdky;

ð52Þ
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where g0(u; v) � (e�u � e�v)=(v� u) is a two-dimensional low-
pass filter that approaches 1 when and only when both uT1
and vT1. The analogous expression for h�Y 2i is

h�Y 2i ¼ 8�z2

h�x2i
1

2�B2
0

Z 1

�1

Z 1

�1

k2x A(k?)

k2?

(
1� g

h�x2ik2?
2

� 	

� eikxX0

"
g

h�X 2ik2x
2

þ
h�Y 2ik2y

2

 !

� 1

2
g0

h�X 2ik2x
2

þ
h�Y 2ik2y

2
;
h�x2ik2?

2

 !

� 1

2
g

h�X 2ik2x
2

þ
h�Y 2ik2y

2
þ h�x2ik2?

2

 !#)
dkx dky;

ð53Þ

which differs from h�X 2i only in that k2y A(k?) is replaced by
k2x A(k?).

In terms of diffusion coefficients, we have

Dsx ¼
2

D?

1

2�B2
0

Z 1

�1

Z 1

�1

k2y A(k?)

k2?

�
1� g D?k

2
?�z

� �
� eikxX0

�
g Dsxk

2
x�zþ Dsyk

2
y�z

� 


� 1

2
g0 Dsxk

2
x�zþ Dsyk

2
y�z;D?k

2
?�z

� 

� 1

2
g Dsxk

2
x�zþ Dsyk

2
y�zþ D?k

2
?�z

� 
��
dkx dky;

ð54Þ

and

Dsy ¼
2

D?

1

2�B2
0

Z 1

�1

Z 1

�1

k2x A(k?)

k2?

�
1� g D?k

2
?�z

� �
� eikxX0

�
g Dsxk

2
x�zþ Dsyk

2
y�z
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� 1

2
g0 Dsxk

2
x�zþ Dsyk

2
y�z;D?k

2
?�z

� 

� 1

2
g Dsxk

2
x�zþ Dsyk

2
y�zþ D?k

2
?�z

� 
��
dkx dky:

ð55Þ

4.2. Interpretation: Reggimes of Diffusivve Separation

Fortunately, the low-pass filters g and g0 facilitate the in-
terpretation of the general behavior of the mean squared

separation between two magnetic field lines, described by
h�X 2i and h�Y 2i as functions of distance along the mean
field, �z. The behavior of h�X 2i is summarized in Table 1;
that of h�Y 2i is similar.
The interpretation presented in this section has been con-

firmed by numerical evaluation of equations (26), (27), (52),
and (53) with the MATHEMATICA program (Wolfram Re-
search, Inc.). Results for specific numerical examples are
shown in Figures 5 and 6; see Appendix for details, including
the turbulence parameters. Figure 5 shows h�x2i and h�X 2i
as a function of �z, with a log-log scale, so diffusive behavior
corresponds to lines of slope 1, with a diffusion coefficient
proportional to the intercept at log�z ¼ 0. Regimes of dif-
fusive behavior are highlighted with solid lines. Figure 6
shows diffusion coefficients Dsx and Dsy as functions of �z, so
here diffusive behavior corresponds to the flat portions of the
curves. We must point out that the assumptions underlying our
quantitative derivation are invalid if the behavior is non-
diffusive. However, we can draw the qualitative conclusion
that superdiffusive behavior ‘‘connects’’ the two diffusive
regimes in Figures 5b and 6.
The regimes of behavior of the mean squared separation are

controlled by the low-pass filters g and g0. The arguments of g
and g0 depend on quantities such as h�x2ik2? or h�X 2ik2x , and
the kx and ky integrals are dominated by the region with
k?P k0?, so the different regimes of behavior are defined by
whether h�x2i and h�X 2i are greater or less than the per-
pendicular coherence length squared, ‘

2
? ¼ 1=k20?.

First, we consider the case where h�x2i3 ‘2? and h�X 2i3
‘2?, which occurs at long distances �z. In this case, all the g0-
and g-terms tend to zero, and we have

h�X 2i ¼ h�Y 2i ¼ 2h�x2i2D;

Dsx ¼ Dsy ¼ 2
(D2D

? )2

D?
¼ 1

D?

ha2i
B2
0

¼ k̃2

D?

hb2i2D

B2
0

: ð56Þ

We see that in the long-distance limit, the field line separation
is axisymmetric, independent of the starting displacement
X0, and diffusive with a diffusion coefficient twice as great
as the two-dimensional contribution to the random walk. This
behavior, which we refer to as fast diffusive separation, can
be seen in the long-distance regimes of Figures 5 and 6. Note
that for the case of a slab-dominated random walk (Dslab

? 3
D2D

? ),

Dsx ¼ Dsy �
2k̃2

‘c

hb2i2D

hb2islab
; ð57Þ

TABLE 1

Types of Separation of Two Magnetic Field Lines in Two-Component Turbulence

Random Walk and Separationa Distance Range Type of Separation

‘2?Th�x2i and h�X 2i ........................ Long �z Fast diAusive separation

h�X 2i � ‘2?Th�x2i ............................ Intermediate �z (only for D2D
? TDslab

? ) SuperdiAusive
h�X 2iT‘2?Th�x2i........................... Intermediate �z (only for D2D

? TDslab
? ) Slow diAusive separation

h�x2i and h�X 2iP ‘2? .......................... Short �z NondiAusiveb

a The quantity h�x2i is the mean squared ‘‘random walk,’’ the perpendicular displacement of a single magnetic Beld
line relative to the mean Beld. The quantity h�X 2i is the mean squared separation between two magnetic Beld lines; see
also Fig. 1.

b If D2D
? TDslab

? , nondiAusive behavior applies at a short distance �z P ‘z regardless of the magnitudes of h�x2i
and h�X 2i.
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and for a two-dimensional–dominated random walk we have

Dsx ¼ Dsy � k̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hb2i2D

q
B0

: ð58Þ

To understand these results for fast diffusive separation,
recall from x 1 that if two turbulent field lines were completely
uncorrelated, undergoing independent random walks, the mean
squared separation h�X 2i would be twice the mean squared

random walk h�x2i of one field line. In the 2D+slab model of
turbulence, only the two-dimensional component decorrelates
in the perpendicular directions, so we can understand why the
fast diffusive separation in the long-distance limit is twice as
great as the two-dimensional contribution to the random walk.
Since this regime involves large separations and decorrelation
of the two-dimensional turbulence at the two field lines, as
shown in Figure 4d, we can also understand why this behavior
is axisymmetric (with h�X 2i ¼ h�Y 2i) and independent of
the initial displacement between the field lines, X0.

Paradoxically, equation (56) implies that when the slab
turbulent energy hb2islab is increased, D? increases and the
coefficient of diffusive separation decreases (as does the two-
dimensional contribution to D?; see eq. [39]). This is illus-
trated by Figures 5a and 5b, which differ only in the amplitude
of slab turbulence (see the Appendix for details). An inter-
pretation of this effect is that rapid lateral excursions due to
slab turbulence quickly decorrelate the ‘‘random flights’’ in
the relative excursions of the two field lines, �X and �Y . The
random flights depend on two-dimensional turbulence and
hence x and y, which change more rapidly with increased slab
turbulence. This yields a shorter mean free z-distance in the
motion of one field line relative to another, hence the lower
coefficient of diffusive separation.

Now let us consider what happens as �z decreases. In the
long-distance limit, we have fast diffusive separation where
h�X 2i ¼ 2h�x2i2D. In the case in which the two-dimensional
component dominates the randomwalk,D2D

? kDslab
? , we indeed

have h�X 2i � 2h�x2i. That implies that these two quantities
both reach ‘2? at about the same distance �z (Fig. 5a). When
h�x2iP ‘2? and h�X 2iP ‘2?, then the low-pass filters g and g0

switch on, our expressions for h�x2i2D and h�X 2i instead vary

Fig. 6.—Coefficients of diffusive separation, Dsx (thick lines) and Dsy (thin
lines), as a function of �z for the slab-dominated case of Fig. 5b and various
initial displacements X0, with x-quantities in units of ‘? and z-quantities in
units of ‘c.

Fig. 5.—Examples of the field line random walk h�x2i and separation h�X 2i as a function of�z, the distance along the mean magnetic field. The random walk is
dominated by (a) the two-dimensional component of turbulence, (b) the slab component of turbulence. Solid lines indicate diffusive behavior; dashed lines indicate
superdiffusion. Dotted lines, for reference, show the extension of the long-distance behavior. Ordinates in units of ‘2?, abscissae in units of ‘c. (See text for details.)

SEPARATION OF MAGNETIC FIELD LINES 429No. 1, 2004



as (�z)2, and our derivation is no longer valid in this regime.
This indeed happens at short distances �z even if the two-
dimensional component does not dominate the random walk.
Physically, we expect such behavior in the ‘‘free-streaming’’
limit where b is nearly unchanged in direction. Such non-
diffusive behavior, the last case listed in Table 1, can be seen at
low �z in Figures 5 and 6.

Therefore, when the two-dimensional component domi-
nates the random walk, the two quantities h�X 2i and h�x2i
are of the same order of magnitude. On the other hand, if the
slab component dominates the random walk, we can have the
field line random walk much greater than the field line sepa-
ration because the slab fluctuations directly contribute to the
former but not the latter. Furthermore, it is possible to have

h�X 2iT‘2?Th�x2i; ð59Þ

which is intermediate to the short-distance and long-distance
regimes described above. In this case, two nearby field lines
follow highly correlated trajectories with a mutual separation
much lower than the displacement from the mean field, as
represented by the lower two field lines in Figure 1. We refer
to this behavior as ‘‘slow diffusive separation.’’

Referring to equations (52)–(55) and recalling that the
integrals are dominated by k?P k0? ¼ 1=‘?, we have g0 ! 0
and g ! 0, with the exception that g (h�X 2ik2?=2) ! 1, so

Dsx ¼
2

D?

1

2�B2
0

Z 1

�1

Z 1

�1

k2y A(k?)

k2?
1� eikxX0
� �

dkx dky; ð60Þ

Dsy ¼
2

D?

1

2�B2
0

Z 1

�1

Z 1

�1

k2x A(k?)

k2?
1� eikxX0
� �

dkx dky: ð61Þ

Recall that A is the power spectrum of a(x; y), i.e., the Fourier
transform of the autocorrelation function ha(0; 0)a(x; y)i. Thus,
the directionally averaged coefficient of slow diffusive sepa-
ration is

Ds �
Dsx þ Dsy

2
¼ 1

D?

ha2i � ha(0; 0)a(X0; 0)i
B2
0

: ð62Þ

This expression for Ds varies linearly with the autocorre-
lation of the flux function a at the initial displacement between
the field lines and has a direct physical interpretation. If the
field lines are initially far apart with X0 3 ‘?, so that the cor-
relation ha(0; 0)a(X0; 0)i ! 0, then we recover the expression
for fast diffusive separation (eq. [56]). Physically, this refers to
the separation between two field lines for uncorrelated two-
dimensional turbulence (and perfectly correlated slab turbu-
lence, at the same z-coordinate), and there is no difference
from the fast diffusive separation regime. On the other hand,
for X0P ‘?, field lines are initially close together with a sub-
stantial correlation in the flux function a, and the coefficient
of diffusive separation is slower in this regime.

Transforming equation (62) to obtain

Ds ¼
1

D?

h½a(X0; 0)� a(0; 0)�2i
2B2

0

; ð63Þ

we see that this expression is also related to the mean squared
difference between a at the positions of the two field lines. Note
that a(X0; 0)� a(0; 0) can be interpreted as

R 2
1
b2D = n̂ d‘, where

d‘ is the line element along any curve connecting the locations

of field lines 1 and 2 and n̂ is the two-dimensional normal to
that curve, i.e., the two-dimensional magnetic flux threading
any such curve. There is an interesting similarity between this
expression and equation (56) for fast diffusive separation.
Another property of slow diffusive separation is that it is

nonaxisymmetric, i.e., h�Y 2i> h�X 2i. Recalling that the
axisymmetry is broken by defining the initial displacement as
(X0; 0), �X initially refers to the change in the distance be-
tween the two field lines, while �Y implies a changing ori-
entation of the displacement (Fig. 4). Mathematically, in the
limit of small X0 and with a transformation to polar coor-
dinates (k?; ’), equations (60) and (61) become

Dsx ¼
1

D?

X 2
0

2�B2
0

Z 2�

0

sin2’ cos2’ d’

� � Z 1

0

k3?A(k?) dk?;

Dsy ¼
1

D?

X 2
0

2�B2
0

Z 2�

0

cos4’ d’

� � Z 1

0

k3?A(k?) dk?: ð64Þ

The bracketed integrals are 1
4
� and 3

4
�, respectively, so for

small X0 the ratio of h�Y 2i to h�X 2i is 3:1. Using the rela-
tion k2?A ¼ P2D

xx þ P2D
yy , we have

Dsx ¼
1

8

1

D?

hb2i2D

B2
0

X 2
0 ;

Dsy ¼
3

8

1

D?

hb2i2D

B2
0

X 2
0 ; ð65Þ

or in terms of the correlation of a, we have

Dsx ¼
1

2

1

D?

ha2i � ha(0; 0)a(X0; 0)i
B2
0

;

Dsy ¼
3

2

1

D?

ha2i � ha(0; 0)a(X0; 0)i
B2
0

: ð66Þ

Note that when ha2i � ha(0; 0)a(X0; 0)i is expanded in terms
of X0, odd terms vanish by symmetry and the leading term is
of order X 2

0 . Numerical values of Dsx and Dsy are shown in
Figure 6 for various values of X0 (in units of ‘?).
Figure 4 also illustrates the transition between slow diffu-

sive separation and fast diffusive separation for a slab-
dominated random walk and for X0P ‘?. When the two field
lines are closer than ‘?, the two-dimensional fluctuations are
strongly correlated, leading to slow diffusive separation. The
distribution of the field line separation is nonaxisymmetric,
preferentially changing the direction of the displacement in-
stead of the distance. This is related to the motion of field lines
subject to two-dimensional turbulence: at any given position,
two field lines are typically both rotating around the same two-
dimensional ‘‘island.’’ The mutual random walk is suppressed
by the temporary confinement of field lines within a perpen-
dicular coherence length. When the distance is of order ‘?,
the two-dimensional fluctuations decorrelate and the rate of
separation increases. This is a regime of superdiffusion that
bridges between the slow diffusive separation and fast diffu-
sive separation (also seen in Figs. 5 and 6). Then for distances
much greater than ‘? one obtains the long-distance limit of
fast diffusive separation, which is axisymmetric and inde-
pendent of X0. The various regimes of field line separation of
summarized in Table 1.
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In Figure 6, it is seen that the onset of superdiffusive be-
havior occurs at a certain �z value, independent of X0. This is
similar to the behavior of the mean separation versus z in
Figure 2 of Maron et al. (2004). This can be understood in
terms of a universal curve of hR2i versus z, defined by the
Ansatz

dhR2i
dz

¼ 4Ds(hR2i): ð67Þ

Here the function Ds(hR2i) is a running diffusion coefficient,
related but not necessarily identical to the diffusion coefficient
derived earlier, and hR2i refers to the mean squared distance
between the two field lines,

hR2i � hX 2i þ hY 2i ¼ X 2
0 þ h�X 2i þ h�Y 2i: ð68Þ

The value of Ds(hR2i) is set to Ds(X
2
0 ) from the slow diffusive

separation regime (in which h�X 2 þ�Y 2iTX 2
0 and hR2i �

X 2
0 ) as given by equation (62). The above Ansatz proposes that

Ds is a function only of hR2i and not a function of the details
of the displacement distribution, which is particularly accurate
for slow diffusive separation and the onset of superdiffusion
(e.g., eq. [65] shows that Ds / X 2

0 , so replacing X 2
0 by the

mean hR2i leaves Ds nearly unchanged). Then the choice of X0

is viewed as the choice of a starting point (z0; hR2i ¼ X 2
0 )

along the universal curve, with h�X 2 þ�Y 2i ¼ hR2i � X 2
0

and�z ¼ z� z0. This model can approximately reproduce the
results in Figure 6 for slow diffusive separation and the onset
of superdiffusion. In that range, using D? � Dslab

? and from
equations (32) and (65), we have

Ds(hR2i) ¼ hb2i2D

hb2islab
hR2i
2‘c

; ð69Þ

and solving equation (67) we obtain

hR2i ¼ X 2
0 e

�z=‘g ;

h�X 2 þ�Y 2i ¼ X 2
0 e�z=‘g � 1
� 


; ð70Þ

where the exponential growth length along the mean magnetic
field,

‘g ¼
‘c
2

hb2islab

hb2i2D
; ð71Þ

marks the end of the approximately linear dependence of
h�X 2 þ�Y 2i on �z, i.e., the end of slow diffusive separa-
tion. In this way, the onset of superdiffusion can be viewed as
part of a process of exponential growth of hR2i as a function
of z, which is an example of stochastic instability. The result
(eq. [71]) amounts to a calculation of the Kolmogorov-Lyapunov
length (Rechester & Rosenbluth 1978) for a slab-dominated two-
component magnetic field turbulence mode.

5. COMPUTER SIMULATIONS

To confirm the conclusions of these analytic calculations,
we also developed computer simulations of field line separa-
tion in 2D+slab turbulence. While the simulations inevitably
involve some discretization and statistical errors, they do
avoid the key assumptions of the analytic work (Corrsin’s
hypothesis, Gaussian probability distributions, and diffusive

separation) and thus provide an independent check of their
validity. Computer simulations are also useful for examining
the regimes in which our analytic expressions are not valid,
i.e., where the field line separation is not diffusive. The basic
methods and results are presented here, and more technical
details can be found in the Appendix.

The simulations involved two steps:

1. Generating representations of slab and two-dimensional
turbulence with desired statistical properties, such as a power
spectrum that follows the Kolmogorov power law over the in-
ertial wavenumber range and rolls over in the energy-containing
range, as observed for solar wind turbulence (Jokipii & Coleman
1968). (See the Appendix for mathematical expressions.) Ran-
dom phases are used in wavenumber space, followed by inverse
fast Fourier transforms to obtain bslab(z) and b2D(x; y). The
transforms in z used 223 (�8:4 ; 106) points, while the trans-
forms in x and y used 212 ¼ 4096 points in each dimension.

2. Tracing magnetic field lines, i.e., solving the coupled
ordinary differential equations

dx

dz
¼ bx(x; y; z)

B0

;
dy

dz
¼ by(x; y; z)

B0

: ð72Þ

We used a fourth-order Runge-Kutta method with adaptive
time stepping regulated by a fifth-order error estimate step
(Press et al. 1992). The Dsx and Dsy values were based on
averages over 1000 pairs of field lines, and each pair was for a
distinct realization of slab and two-dimensional turbulence.

Now the key physical conclusions of the analytic work
(Table 1) can be checked using the computer simulations. In
the two-dimensional–dominated case, where D2D

? kDslab
? , we

expect a nondiffusive (free-streaming) regime at short �z,
followed by fast diffusive separation at long �z (where
h�x2ik ‘2?). The analytic expression is expected to hold
quantitatively for diffusive behavior in the long-distance limit;
in particular, the fast diffusive separation rate should be given
by equation (56).

Figure 7 shows a specific example of two-dimensional–
dominated behavior. Specifically, we used hb2i2D ¼ hb2islab ¼
B2
0=8, X0 ¼ 0:1339, and other parameters as in the Appendix.

Fig. 7.—Coefficients of diffusive separation derived from computer sim-
ulations, Dsx (thick solid line) and Dsy (thin solid line), compared with
Dsx ¼ Dsy from analytic calculations (dashed line), as a function of �z for a
random walk dominated by the two-dimensional component of turbulence.
The long-distance limit is the regime of fast diffusive separation. (See text for
details.)
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These yield D2D
? ¼ 0:144 and Dslab

? ¼ 0:0625. The computa-
tional box sizes were Lz ¼ 106‘z and Lx ¼ Ly ¼ 200‘z. The
simulation results for Dsx (thick solid line) and Dsy (thin solid
line) are compared with the analytic predictions for Dsx and
Dsy from equations (54) and (55), which are indistinguishable
in Figure 7 (dashed line). The difference of about 10% at large
�z represents good quantitative agreement, given the simu-
lation uncertainties. These include the statistical uncertainty,
as estimated from the difference between simulation results
for Dsx and Dsy and their stochastic variation with �z, and
the discretization error of about 6%, which we estimate
by replacing continuous integration over k in the analytic
expressions with discrete sums over the k-modes used in the
simulations. Note also that the analytic expression correctly
identifies the �z range in which diffusive separation behavior
begins, i.e., the lower limit of applicability of the diffusion
approximation.

Another simulation with the same total turbulent energy but
a 20:80 ratio of hb2islab to hb2i2D showed a similar level of
agreement. Indeed, agreement on the order of 15% was also
found between computer simulations and analytic calculations
for the field line random walk (Gray et al. 1996). In addition to
the long-distance limit, another noteworthy feature of our two-
dimensional–dominated simulations is that in the free-streaming
regime, there is nonaxisymmetric separation, Dsy > Dsx, remi-
niscent of the analytic results in the slow diffusive regime for the
slab-dominated case (see also Fig. 4).

The interesting features of analytic results for the slab-
dominated case (Dslab

? 3D2D
? ) are a regime of nonaxisym-

metric slow diffusive separation, with Dsy � 3Dsx, followed by
a superdiffusive transition to fast diffusive separation in the
long-distance limit. We performed computer simulations for
the same parameter values as in Figures 5b and 6, with the
exception that X0 was set to 0.01. The computational box sizes
were Lz ¼ 2 ;106‘z and Lx ¼ Ly ¼ 200‘z. The comparison
with analytic calculations (Fig. 8) demonstrates good agree-
ment, with both simulation and analytic values flattening over
the same range of �z at the ratio Dsy=Dsx � 3. The difference
of �15% is again of the same order as the statistical and dis-
cretization errors in the simulations (the latter is estimated

at 10%–15%) and is similar to that obtained by Gray et al.
(1996).
Note that in the slab-dominated case, the slow diffusion and

onset of superdiffusion can also be expressed as an exponential
separation phase (see x 4.2). When fitting the computational
results for hR2i ¼ X 2

0 þ h�X 2i þ h�Y 2i to an exponential
function of z, we find that the best fit is for hR2i ¼ 9:97 ;
10�5 exp (� z=6:57 ;105). Referring to equations (70) and
(71), the analytic expectation is hR2i ¼ X 2

0 exp (� z=‘g),
where for this case X 2

0 ¼ 10�4 and ‘g ¼ 6:67 ; 105. Thus, the
analytic and numerical calculations agree to within 0.3% for
the prefactor and to within 1.5% for the exponential growth
length, ‘g.

6. DISCUSSION AND CONCLUSIONS

We have developed an analytic formalism for the ensemble-
averaged field line random walk and separation that does
not assume a long-distance limit, i.e., in which fluctuations
between the two field lines have not completely decorrelated.
This is possible by retaining finite limits of integration in
�z0. The results of the analytic theory have been confirmed
by numerical simulations, justifying the use of Corrsin’s
hypothesis.
The analytic results we have derived are nonperturbative

in the sense that neither the total turbulent energy nor the
turbulent energy of the slab or the two-dimensional compo-
nent is constrained to be small. The results are also not re-
stricted to a specific functional form for the power spectrum.
We consider a particular case of anisotropic turbulence, in which
power in k-space is concentrated along the parallel axis and
(axisymmetrically) along the perpendicular plane.
With its idealized and clear separation of parallel and per-

pendicular fluctuations, the two-component magnetic turbu-
lence model considered here is an archetype of highly an-
isotropic turbulence, which also serves as a useful model of
turbulence in the solar wind (Matthaeus et al. 1990; Bieber
et al. 1996) and has helped to quantitatively explain solar
energetic particle transport (Bieber et al. 1994). In compari-
son, in the work of Jokipii (1973) all the turbulence is taken to
decorrelate after a certain z-distance. In this sense it is like the
slab component in our work but differs in that it also con-
tributes to field line separation. The results of Jokipii (1973)
were generalized by Zimbardo et al. (1984) to other mean field
geometries.
Our overall picture of diffusive separation at long distances

and nondiffusive separation at short distances, with possible
regimes of slow diffusion and superdiffusion in between, is
qualitatively consistent with that presented by Isichenko
(1991a, 1991b) for general magnetic turbulence. As discussed
in the previous section, the slow diffusion and onset of super-
diffusion in the mean squared separation h�X 2 þ�Y 2i can be
identified as an exponential growth of the mean squared dis-
tance between two field lines, hR2i, as discussed by various
authors (e.g., Skilling et al. 1974; Rechester & Rosenbluth
1978; Krommes 1978; Similon & Sudan 1989; Isichenko
1991a, 1991b and references therein). It was shown by
Barghouty & Jokipii (1996) that the results of Jokipii (1973)
can also be interpreted in such terms. In terms of the separation
of field lines, we have shown that there is a regime that can be
usefully considered as diffusive and nonaxisymmetric in the
perpendicular directions (slow diffusive separation; Figs. 4, 5,
6, and 8).
In our detailed work for the particular case of two-component

turbulence, we find a criterion for different types of field line

Fig. 8.—Coefficients of diffusive separation derived from computer simu-
lations, Dsx (thick solid line) and Dsy (thin solid line), compared with those
from analytic calculations (thick dashed line and thin dashed line, respec-
tively), as a function of �z for a random walk dominated by the slab com-
ponent of turbulence, in the regime of slow diffusive separation. (See text for
details.)
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separation behavior that is somewhat different from that of
Isichenko (1991a, 1991b). That work, as well as Krommes
(1978) and Kadomtsev & Pogutse (1979), stressed a parameter
R given (in our notation) by

R �
ffiffiffiffiffiffiffiffiffi
hb2i

p
B0

‘z
‘?

; ð73Þ

sometimes called the Kubo number. On the other hand, our
work identifies regimes of behavior that depend on Dslab

? =D2D
? ,

the ratio of contributions to the field line random walk, which
are in turn related to the amplitude of each component and
the relevant distance scales. (Recall that D2D

? contains k̃, the
ultrascale, which is in general distinct from the perpendicular
coherence scale ‘?.) Both D? and Ds have different depen-
dences for Dslab

? =D2D
? 31 or T1 (compare eqs. [32] and [38]

with eqs. [57] and [58]).
Can we reconcile the role of R in previous studies with the

role of Dslab
? =D2D

? in our work? We note that the previous work
that considered R as a key parameter did not specifically
consider turbulence with very different amplitudes for quasi-
parallel and quasi-perpendicular wavevectors k, apparently
making the implicit assumption that those amplitudes are
comparable. Indeed, the ratio

Dslab
?

D2D
?

¼ hb2islab=B2
0ffiffiffiffiffiffiffiffiffiffiffiffiffi

hb2i2D
q

=B0

‘c=2

k̃=
ffiffiffi
2

p ð74Þ

reduces to R (modulo constants of order unity) in the case
where hb2islab � hb2i2D and k̃ � ‘?. Therefore, we suggest that
the ratio of contributions to D? from quasi-parallel and quasi-
perpendicular wavevectors k may be a more general criterion
for determining the behavior of field line separation in an-
isotropic turbulence.

The exponential growth rate for the mean squared distance,
which has also been called the Kolmogorov entropy or to-
pological entropy (see Appendix B of Isichenko 1991b), is
also found to be different for various cases of magnetic tur-
bulence (Jokipii 1973; Barge et al. 1984; Similon & Sudan
1989; Isichenko 1991a, 1991b; Barghouty & Jokipii 1996;
Maron et al. 2004), showing that general expressions are not
always applicable to particular cases of interest. In our case
of two-component turbulence, the exponential growth length,
given by equation (71), is again related to the ratio between
the amplitudes of slab and two-dimensional components of the
turbulent magnetic field, not only correlation lengths and the
overall amplitude as suggested by Isichenko (1991a, 1991b).

Now let us return to a specific issue raised in x 1: can
observed dropouts (i.e., sharp spatial gradients) of solar

energetic particles be explained by field line separation in the
solar wind that is much slower than the field line random
walk? Apparently not, because observed particle motion and
magnetic turbulence in the solar wind are best modeled by a
roughly 80 : 20 ratio in two-dimensional : slab turbulent energy
(Bieber et al. 1994, 1996), and k̃ is inferred from observations
to be �0.2 AU (Matthaeus et al. 1999), so the derived value of
D2D

? ¼ 0:37 AU is about an order of magnitude higher than the
slab contribution. This corresponds to a two-dimensional–
dominated random walk, the case of Figure 5a, and we expect
fast diffusive separation (Ds � 2D2D

? ) for distances greater
than a parallel coherence length of �0.02 AU. Therefore, field
line separation should correspond to uncorrelated random
walks of two field lines starting in the same region. An al-
ternative explanation of dropouts, corresponding to temporary
trapping of field lines near O-points in the turbulence, is
presented by Ruffolo et al. (2003).

In conclusion, we use nonperturbative analytic techniques
based on the Corrsin independence hypothesis and computer
simulations to investigate the separation of magnetic field lines
in a two-component model of anisotropic turbulence, which
has proven to be a useful model of turbulence in the solar
wind. In the long-distance limit, we predict ‘‘fast diffusive sep-
aration’’ with a diffusion coefficient Ds � 2(D2D

? )2=D?, where
D? refers to the perpendicular diffusion (random walk) of field
lines relative to the (constant) mean magnetic field and D2D

? is
for the case of vanishing slab turbulence. This has the coun-
terintuitive implication that increasing slab turbulence leads to
a smaller Ds. If the random walk is dominated by the two-
dimensional component of turbulence, fast diffusive separation
begins as soon as the random walk reaches a perpendicular
coherence length ‘?. However, if the slab component domi-
nates the random walk, there is more interesting behavior at
intermediate�z. We find nonaxisymmetric, slow diffusive sep-
aration at a rate related to the correlation of the flux function
(vector potential) at the initial separation, followed by super-
diffusive separation at �z k ‘g, which increases up to the fast
diffusive separation rate. The length ‘g is identified with an ex-
ponential growth scale for the distance between neighboring
magnetic field lines, which is related to the relative amplitudes
of the slab and two-dimensional components.
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search Institute, University of Delaware, where this work was
conceived. This research was partially supported by a Basic
Research Grant and a Royal Golden Jubilee Fellowship from
the Thailand Research Fund, the Rachadapisek Sompoj Fund
of Chulalongkorn University, and the NASA Sun-Earth
Connections Theory Program (grant NAG 5-8134).

APPENDIX

NUMERICAL EVALUATION OF ANALYTIC EXPRESSIONS

The present work yields somewhat complicated analytic expressions for the separation between two magnetic field lines in two-
component turbulence (x 4.1), which are interpreted in x 4.2. We found it useful to verify that interpretation by numerically
evaluating the integrals in equations (26), (27), (54), and (55) with the MATHEMATICA program (Wolfram Research, Inc.) for
some special cases. Those results, plotted in Figures 5 and 6, are found to agree with the interpretation of the analytic expressions
in x 4.2. In contrast, the comparison in Figures 7 and 8 with numerical simulations, which do not incorporate the analytic theory in
any way, is an independent test of the validity of the analytic theory itself and its underlying assumptions.
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For the numerical evaluation of analytic expressions, the following power spectra were used:

P slab
xx (kz) ¼ P slab

yy (kz) /
1

1þ k2z =k
2
0z

� �5=6 ; ðA1Þ

A(k?) /
1

(1þ k2?=k
2
0?)

7=3
: ðA2Þ

These forms roll off to a constant at low k, and far above k0z or k0? they follow a Kolmogorov law, with the omnidirectional power
spectrum (OPS) varying as k�5=3. To see this, note that for slab (one-dimensional) fluctuations the OPS is simply P

slab
xx þ P

slab
yy ,

which has the correct dependence, and for two-dimensional fluctuations at a given magnitude k?, the OPS / k?(P
2D
xx þ P2D

yy ) ¼
k3?A, which varies as k�5=3

? for large k?. However, we stress that the results described in the main text do not require power
spectra of these specific forms.

For convenience, B0, ‘c, k0?, and ‘? were all set to 1. Effectively, the calculations are for B in units of B0, and x and z in units of
‘? and ‘c, respectively. For the slab turbulence spectrum of equation (A1), setting ‘c ¼ 1 implies that ‘z ¼ 1=k0z ¼ 1:339, and for
the two-dimensional spectrum of equation (A2), ‘? ¼ 1 implies an ultrascale k̃ ¼ 0:577. Figure 5 used X0 ¼ 0:1. For Figure 5a, the
slab and two-dimensional turbulence energies were set to hb2islab ¼ 7:07 ;10�7 and hb2i2D ¼ 7:5 ;10�9, yielding Dslab

? ¼
3:54 ;10�7 and D2D

? ¼ 3:54 ;10�5, for a random walk dominated by the two-dimensional component. For Figures 5b and 6, the
only difference was that the slab energy (i.e., hb2islab) was set to 0.01, or 1:41 ;104 times stronger, for Dslab

? ¼ 5 ; 10�3, so that slab
turbulence dominates the random walk. These values were chosen for clarity, to separate the various physical regimes, and not to
correspond to any specific physical situation such as the solar wind.

Using MATHEMATICA, we first directly calculated h�x2islab for various values of�z and then iteratively calculated h�x2i and
D?. Next Dsx and Dsy were calculated iteratively and simultaneously by a secant method (using FindRoot). Care was required to
ensure precision and accuracy fine enough to yield good results yet coarse enough to allow the integrals and iterations to converge.
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