Transport and Acceleration of Solar Energetic Particles from Coronal Mass Ejection Shocks

David Ruffolo Dept. of Physics, Faculty of Science, Mahidol Univ., Bangkok 10400 THAILAND

Outline

Overview
SEP Transport
SEP Acceleration

Overview of observations [Bryant et al. 1962] 3

Protons

Protons

6 7

5

4

Oct.

Solar energetic particles							
Impulsive	CME shocks (gradual events)						
flares	near Sun	interplanetary					
³ He enhanced, electron-rich high ion Q	Up to high E, dispersive onset	At low E, non-dispersive pea					
(stochastic acceleration)	(shock a	cceleration)					

Pitch-angle transport equation [DR 1995, ApJ, 442, 861]⁶

$$\begin{split} \frac{\partial F(t,\mu,z,p)}{\partial t} &= -\frac{\partial}{\partial z} \mu v F(t,\mu,z,p) \qquad (\text{streaming}) \\ &- \frac{\partial}{\partial z} \left(1 - \mu^2 \frac{v^2}{c^2}\right) v_{\text{sw}} \sec \psi F(t,\mu,z,p) \qquad (\text{convection}) \\ &- \frac{\partial}{\partial \mu} \frac{v}{2L(z)} \left[1 + \mu \frac{v_{\text{sw}}}{v} \sec \psi - \mu \frac{v_{\text{sw}}v}{c^2} \sec \psi\right] \\ &\cdot (1 - \mu^2) F(t,\mu,z,p) \qquad (\text{focusing}) \\ &+ \frac{\partial}{\partial \mu} v_{\text{sw}} \left(\cos \psi \frac{d}{dr} \sec \psi\right) \mu (1 - \mu^2) \\ &\cdot F(t,\mu,z,p) \qquad (\text{differential convection}) \\ &+ \frac{\partial}{\partial \mu} \frac{\varphi(\mu)}{2} \frac{\partial}{\partial \mu} F(t,\mu,z,p) \qquad (\text{scattering}) \\ &+ \frac{\partial}{\partial p} p v_{\text{sw}} \left[\frac{\sec \psi}{2L(z)} (1 - \mu^2) + \cos \psi \frac{d}{dr} \sec \psi \mu^2\right] \\ &\cdot F(t,\mu,z,p). \qquad (\text{deceleration}) \end{split}$$

Simulation of interplanetary transport

- Specify magnetic field configuration
- Solve PDE
- Runs in a few minutes [Nutaro et al., Comp. Phys. Comm. '01]

Fitting SEP data

- Simultaneous fit to intensity vs. time

anisotropy vs. time

- Optimal piecewise linear injection (least squares)
- Optimal scattering mean free path, $\boldsymbol{\lambda}$

[DR, Khumlumlert, & Youngdee, JGR '98]

Easter 2001

8

- Ground Level Enhancement (GLE)
- Observed by neutron monitors (high statistics, precise directionality)
- We can accurately fit the intensity & anisotropy
- Precise timing results (will show shortly)

[Bieber et al., ApJL, 2004]

GLE of Bastille Day 2000: Initial Fit ...

Magnetic bottleneck in space

... Final Fit

Thus we have convincing evidence for interplanetary magnetic mirroring of energetic particles.

[Bieber et al., ApJ, 2002]

Closed magnetic loop?

Oct. 28, 2003¹³

- Solar neutrons: from interacting SEP
- Mysterious fast peak
- Slow decay implies loop geometry
- Timing of main peak of escaping SEP: onset at soft X-ray maximum (like Easter 2001)

[Bieber et al., sub. to GRL]

Comparison with EM timing

EMISSION	APR. 15, 2001			OCT. 28, 2003			
	START	PEAK	END	START	PEAK	END	
Relativistic Protons	13:42	13:48		11:03	11:41		
Soft X-rays	13:11	13:42	13:47	10:52**	11:02	11:16	
H-alpha	13:28	13:41	15:27	09:53	11:57	14:12	
Type III radio burst	13:36		13:38	-		-	
CME liftoff*	13:24-31			10:53-58			
Type II radio burst	13:40		13:47	10:54		11:03	
Type IV radio burst	13:44		14:57	10:25		15:23	

* Linear - quadratic fits ** Sudden onset of intense emission

All times are "Solar Time" or UT minus 8 min. for EM emissions

How accurate is the injection timing derived from linear fits to onsets?

There is some spread in the injection start times and pathlengths derived from straight-line fits, depending on the mean free path and duration of injection:

- Injection timing: several minutes
- Pathlength: ~ 50 %

Solar energetic particles				
Impulsive	CME shocks (gradual events)			
flares	near Sun interplanetary			
³ He enhanced electron-rich	I, Up to high E, At low E, dispersive onset non-dispersive peak			
mgn ion Q	Difficult to separate acceleration & transport			
	Saturation, composition changes [Ng et al. '99)]		
(stochastic acceleration)	Seed population, local accelerated spectrum (shock acceleration)			

Transport *parallel* or *perpendicular* to the mean magnetic field

Perpendicular transport: Recent ideas

Dynamical turbulence [Bieber & Matthaeus 1997]
MC simulations [Giacalone & Jokipii 1999]
Second diffusion: Nonlinear guiding center theory [Qin et al. 2003]
Trapping by topology of turbulence [DR, Matthaeus, & Chuychai 2003]

Acceleration hospitations by shocks

... and diffusive shock acceleration

<u>Following</u> collision with a scattering center: lose energy <u>Head-on</u> collision with a scattering center: gain energy Since $u_1 > u_2$ there is a net gain in energy

(Desai et al. 2003 ApJ 558, 1149).

Solar wind & IP shock abundances

Upstream & IP shock abundances

Spectra and abundances for Sep. 7 2002 IP shock

(Desai et al. 2003 to be submitted to ApJ).

25 Why do the spectra roll over at ~ 0.1 - 10 MeV/n? (data - see also: Gosling et al. 1981; van Nes et al. 1985) Possible mechanisms suggested by Ellison & Ramaty (1985) \diamond shock thickness ~ $\kappa/u \rightarrow$ energy is too low \diamond drift over shock width \rightarrow rollover at ~ 100 MeV/Q \diamond finite time for shock acceleration \rightarrow considered here (see also: Klecker et al. 1981; Lee 1983)

Finite-Time Shock Acceleration

- Probability approach (like Bell 1978, Drury 1983)
- Acceleration rate, $r = 1/t_{acc}$ Escape rate, ε Time at present (age of shock), tNo. of acceleration events, n
- *r*, *ε* constant w/ energy combinatorial model
- *r*, *\varepsilon* varying ODE (analytic, numerical)
- Acceleration at interplanetary shocks

Rollover energy (E_c/A) (well above injection energy)

 $\frac{\lambda = \text{const.}}{E_c / A \propto t^2}, \text{ independent of } Q/A$

 $\frac{\lambda \propto P^{\alpha}}{E_c / A \propto t^{2/(\alpha+1)} (Q/A)^{2\alpha/(\alpha+1)}}$

