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When do particles follow field lines?
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[1] We examine charged particle transport perpendicular to the large scale magnetic field.
We find that the limit of an infinite parallel mean free path of particles diffusing along the
large scale magnetic field is a necessary condition for which the diffusive spread of the
magnetic field lines leads to a proportional spread of the particles. When it occurs this
requires that parallel mean free path is well in excess of the smaller of the system size and
the turbulence ultrascale. However, there are alternative situations in which particles may
diffuse, but field lines do not. In the latter cases the asymptotic behavior is that which
persists after the parallel mean free path exceeds some multiple of the correlation scales.
This phenomenon of diffusing particles/non-diffusing field lines is typically determined by
the 2D turbulence spectrum, where the diffusion coefficient of the magnetic field due

to 2D turbulence can diverge if the spectrum of the 2D fluctuations is not well behaved at
small wave numbers. We also show that the classical relation between parallel and
perpendicular diffusion for high energy particles is consistent with the field line random

walk description of particle diffusion.
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1. Introduction

[2] It is often stated that charged particle trajectories
follow magnetic field lines in a plasma. There are several
possible meanings to this proposition and a number of ways
in which they can be violated. For example, the so-called
Field Line Random Walk (FLRW) model of particle trans-
port [e.g., Jokipii, 1966] is valid when particle gyrocenters
follow the meandering field lines at a roughly constant
speed. When the field lines spread diffusively, so also will
the particles, and this can then be called “first diffusion.”
Both scattering and drift effects [Rossi and Olbert, 1970]
lead to violations of this simple picture. Nevertheless the
basic idea is often employed or adapted with apparent
success, either in the global sense of particles behaving like
“beads on a string” and retracing their steps when their
motion along the field is reversed by scattering effects
(subdiffusion), or in the sense of locally “following field
lines” for at least a short distance. On the other hand there
are circumstances in which departures from “particles
following field lines” are important, and notably there are
cases in which such departures are required to obtain
“second diffusion” in perpendicular transport [Rechester
and Rosenbluth, 1978; Chandran and Cowley, 1998; Qin et
al., 2002a; Matthaeus et al., 2003]. In this paper, we address
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the question posed in the title by seeking to provide at least
partial clarification of the question of whether, and in what
way, particles “follow field lines” or behave like “beads on
a string” in certain limits of perpendicular diffusion. We
shall do this by presenting results from numerical simula-
tions and by revisiting some recent theoretical treatments of
particle diffusion.

2. Beads on a String?

[3] The elementary notion of particles following field
lines emerges in single particle orbit theory [e.g., Rossi
and Olbert, 1970] where the gyrocenter of charged particle
motion remains on a certain magnetic field line when that
field is uniform and constant, and the electric field is
negligible. When constant (or slowly varying) magnetic
field gradients and constant electric fields are present,
(gyroperiod-averaged) drift velocities provide a correction
to the simplest picture, and in the same limit adiabatic
invariants (e.g., magnetic moment) provide useful con-
straints on possible particle motions. Even in these idealized
circumstances, gyrocenter trajectories can become unde-
fined when the field lines themselves become ambiguous,
for example when neutral points or separatrices of the
magnetic field are present. Moreover when symmetries of
the magnetic field are imposed [Jokipii et al., 1993; Jones et
al., 1998] the idea that “particles remain on a specific field
line” can be replaced by “particles remain on a flux
surface”, that is, somewhere on a set of equivalent field
lines. The situation becomes more complicated when clas-
sical (hard sphere or Coulomb) scattering is introduced, and
conditions for the drifting gyrocenter picture can be strongly
violated.
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[4] It is in the midst of this already complex landscape
that one seeks to develop transport theories for charged
particles in a low-collisionality turbulent medium. Quasi-
linear (QLT) or Fokker-Planck approaches [Jokipii, 1966;
Schlickeiser, 1989] develop perturbation schemes in which
random forces on particles are computed along unperturbed
trajectories. Here one begins to see how problems interpret-
ing the beads-on-a-string picture arise: pitch angle scattering
changes the particle magnetic moment, and also, in fully
three dimensional cases, changes the bundle of field lines
encircled by the gyro-orbit. Therefore there is a change in
the range of possibilities of “which field line to follow™
when even weak scattering is present.

[s] For stronger scattering [Lingenfelter et al., 1971;
Urch, 1977; Rechester and Rosenbluth, 1978] the parallel
and perpendicular scattering processes are no longer inde-
pendent. Scattering parallel to the mean magnetic field can
cause a reversal of the particle velocity along the magnetic
field, a subsequent reduction of perpendicular random
displacement, and the possibility of subdiffusion. This
process is observed in simulations [Qin et al., 2002b]. Also
seen in some cases is the restoration of diffusive transport
[Qin et al., 2002a] when the particles effectively change
which field line they are following, and the magnetic
turbulence exhibits sufficient spatial complexity. In such
cases a diffusive limit can also be established, once the
displacements become uncorrelated, although the reasons
for the decorrelation are different from the case of particles
simply following field lines. This phenomenon of second
diffusion, which replaces perpendicular subdiffusion at
longer time intervals for spatially complex turbulence, is
reasonably well described by the Nonlinear Guiding Center
Theory [NLGC; Matthaeus et al., 2003; Bieber et al., 2004]
and its offspring [e.g., Shalchi et al., 2004b]. In this picture
one can say that the particle guiding centers locally follow
field lines over a distance determined by the mean free paths
of parallel scattering and the field line random walk. After
that, the particle switches to a different field line. The
guiding center motion is taken to be randomized, with no
“backtracking” along the same field line.

3. FLRW Limit

[6] For reasons that will presently become clear, in what
follows we define the field line random walk (FLRW) limit
of particle diffusion to be all cases in which the particle
perpendicular diffusion coefficient x, is related to the
magnetic field line diffusion coefficient (or Fokker-Planck
coefficient) D | through the proportionality

Ky xvD,, (1)

with v the particle speed. One can arrive readily at this form
by a simple heuristic argument: Suppose that on average the
magnetic field spreads a mean square perpendicular distance
((Ax)?) per unit distance Az along the mean magnetic field.
Further suppose that particle gyrocenters follow field lines,
so that the particle perpendicular diffusion coefficient is
estimated as

AZP
’”_<E

><<Ax>2>. o

2Az
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Here z,, denotes particle position along the mean field. The
effective speed of movement v,; along z needs to be
determined by further considerations, but in any case can be
scaled to the total particle speed, so that v.;= (|Az,/At]) =
qv for some number g. Then, when the Fokker-Planck
coefficient for field line random walk D, = ((Ax)*)/(2Az) is
well defined, we arrive at particle transport as in equation
(1). Here we consider the term FLRW transport, defined by
equation (1), to describe a class of perpendicular transport
models that can in principle have different constants of
proportionality, ¢, in different circumstances.

[7] For “first diffusion” of particles traveling over time
intervals less than a scattering mean free time, we expected
that k, = (|u|)vD, where p is the cosine of the pitch angle
between the particle momentum and the average magnetic
field. For example, a beam of solar energetic particles
moving at low pitch angles along the magnetic field over a
distance less than a mean free path could have || close to 1,
and after the same population is isotropized by scattering,
then subsequent perpendicular diffusion over times less than
a scattering mean free time would be governed by (||) = 1/2.
In such cases the particle perpendicular mean free path is on
the order of the field line diffusion coefficient: A\ | ~x /v ~
D,. With strong parallel scattering, one obtains sub-
diffusive perpendicular transport [e.g. Urch, 1977; Kota
and Jokipii, 2000; Qin et al., 2002b], or levels of particle
perpendicular diffusion in which particles spread more
slowly than in the FLRW limit with (|u|) = 172 [e.g.
Giacalone and Jokipii, 1999; Qin et al., 2002a; Matthaeus
et al., 2003; Minnie, 2006]. Various factors can contribute to
establishing the effective speed of particles along field lines
and the constant of proportionality in equation (1), the most
obvious of which are related to the steady three dimensional
particle velocity distribution that is obtained in a particular
physical situation or numerical experiment. For example,
the Jokipii [1966; QLT] result corresponds to x, = vD /2,
that is, an effective speed of v/2 as discussed above.
Throughout the paper we maintain the conventional relation
between diffusion coefficient and mean free path, namely
KR = VA J_/ 3.

[8] In the following sections, we will compare the trans-
port of particles and field lines to examine when a FLRW
limit is obtained, that is, when the diffusive spread of
particles across the large-scale field is proportional to the
diffusive spread of field lines. This requires that we examine
cases with varying parallel mean free paths. We find,
perhaps surprisingly, that only in some cases is FLRW the
asymptotic behavior, and in others particle transport may be
diffusive even when magnetic field line random walk is not
diffusive. This leads to the conclusion that while particle
gyrocenter trajectories have a strong relation to field line
trajectories, there are other factors that can prevent particles
and field lines from diffusing at proportionally similar rates.

4. Numerical Experiments

[9] The results presented here are from simulations by
Minnie [2006], also discussed in Minnie et al. [2007]. The
simulations cover magnetic fluctuation amplitudes 6B rang-
ing from 0.2 to 5.0, in units of the background magnetic
field magnitude B, and a range of maximal (90° pitch-
angle) particle Larmor radii 7y, from 0.01 to 1.0, in units of
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Figure 1. Simulation results showing the perpendicular

mean free path as a function of the parallel mean free path.
Here the perpendicular mean free path has been normalized
to the diffusion coefficient of the magnetic field lines (D)
and the parallel mean free path has been normalized to the
bend-over scale of the slab turbulence power spectrum ().

the bend-over scale )\ of the slab turbulence power
spectrum. The bend-over scale the length-scale \ associated
with the change of shape of the spectrum at the low
wavenumber end of the inertial range. The latter is fre-
quently modeled as a power law. That is, for A\ > 1, with k&
the wave number, the spectrum is of the inertial range
form. The bend-over is typically, but not always, compara-
ble to the correlation scale of the fluctuations [Matthaeus et
al., 2007]. The turbulence is a composite of slab and two-
dimensional (2D) geometry [e.g. Gray et al., 1996], with
20% of the fluctuation energy in the slab component and
80% in the 2D component, typical of near-Earth solar wind
conditions [Bieber et al., 1996]. In the simulations the bend-
over scale of the slab turbulence power spectrum was used as
the unit of length. The value of the bend-over scale of the 2D
turbulence power spectrum, \,p, was chosen to be \yp =
0.1

[10] In Figure 1 we show the particle perpendicular mean
free path normalized to the value of the field line diffusion
coefficient, as a function of the particle parallel mean free
path (which is in turn dependent upon 6B). The horizontal
dashed line indicates A\, = D, corresponding to a FLRW
model with x, = (1/3)vD |, and an effective speed equal to a
third of the total particle speed.

[11] Note that in what follows, the value for the field line
diffusion coefficient is not determined directly from the
simulations. Instead, the theoretical value of D, from
Matthaeus et al. [1995] is used throughout the present
discussion, using the parameters of the model magnetic field
of the simulations. The theoretical predictions were shown
to closely correspond to computer simulation results [Gray
et al., 1996]. This issue will be addressed in more detail in a
subsequent section.

[12] In Figure 1, there is a very clear trend of A,
approaching D, as )| becomes sufficiently large. A
sufficient condition for this would be that particles follow
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field lines as ““beads on a string;” however, this condition is
not necessary. In fact the current view is that particles
traveling longer than a mean free time must deviate from
following individual field lines in order to avoid subdiffu-
sion [Urch, 1977; Rechester and Rosenbluth, 1978] and to
obtain second diffusion [Qin et al., 2002a]. Therefore at this
point we can only assert that the limiting behavior seen in
Figure 1 implies that the statistical spread of particles
perpendicular to the mean magnetic field becomes similar to
the transverse spread of field lines.

5. Energy Effects on “Beads”

[13] Intuitively one might expect that a particle with
lower energy (smaller Larmor radius) will follow the field
more closely than its high energy (larger Larmor radius)
counterpart. Indeed, the derivation of gyrocenter and drift
equations of motion starting from smooth fields supports
this predisposition. However, this is not always true.

[14] On the one hand, arbitrarily low energy electrons can
exhibit an increasing parallel mean free path with decreas-
ing energy, associated with their resonant interaction with
the steepened power spectrum in the dissipation range of the
turbulence [Bieber et al., 1994; Dréoge, 2000]. When parallel
scattering is suppressed in this way, the electrons can follow
a single field line for a longer time, leading toward a
tendency of \| < D .

[15] However, it is also significant that the parallel mean
free path of electrons and protons at arbitrarily high energy
is typically a monotonically increasing function of energy.
For particles resonant with the turbulence inertial range, this
is readily deduced from theoretical treatments [e.g. Jokipii,
1971; Bieber et al., 1995; Shalchi et al., 2004b] and
numerical simulations [e.g. Giacalone and Jokipii, 1999;
Qin, 2002; Minnie et al., 2007] of particle transport in
turbulent magnetic fields. Consequently, it becomes apparent
that the limit of large A in Figure 1 corresponds to a high
energy approach to a FLRW transport limit. Somewhat
paradoxically, one sees that the notion of particles
“following field lines,” in this statistical sense, need not
necessarily be a small Larmor radius effect, but rather, can
be a high energy, large Larmor radius limit.

6. Analytical Examination of the FLRW Limit

[16] To understand Figure 1 and the approach of A\, to a
stable value of order D, as A\ becomes large, we turn to the
nonlinear guiding center (NLGC) theory of asymptotic
(second) diffusion [Matthaeus et al., 2003]. The NLGC
theory has been used successfully in an ab initio cosmic ray
modulation model to account for the rigidity dependence of
the observed latitudinal gradients of protons in the helio-
sphere [Minnie et al., 2005]. It has also been successful in
accounting for the inferred perpendicular mean free path of
Jovian electrons arriving at Earth [Bieber et al., 2004].

[17] For the case of axisymmetric perpendicular diffusion
(i.e. Ky = Ky, = ) and a static magnetic field, the NLGC
perpendicular diffusion coefficient satisfies

a*? N S(k)

_a , 3
6B(2) K v/)\H JrkZz/{H +kiﬁl (3)

R
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with @ a numerical constant of order unity, v the particle
speed, By = Byz the large scale magnetic field and S(k) =
Sedk) + S,,(k) the total power spectrum of the magnetic
fluctuations, i.e., the sum of spectra of fluctuations in the x-
and y-directions, as a function of the wave vector k = (k,, k,,
k.). Also, we denote by k, the perpendicular wavenumber
with &1 = i} + k.

[18] Using the composite model for the magnetic fluc-
tuations, the fluctuation spectrum can be written as S(k) =
S(K)o(k)o(k,) + S>p(k)é(k.). Using the relation A, =
3k /v, we can therefore write equation (3) as

a2 r
A=
LB /

[19] One important property of the NLGC formulation is
that it includes the influence of ) on the determination of
A1, thus incorporating at least some of the essential physics
of the interplay between these types of transport, the nature
of which we alluded to in the introductory paragraphs
above. We are particularly interested in the behavior of A
when parallel scattering becomes negligible, i.e., A — oo.
To examine this, we normalize all length scales to a
characteristic length scale L,, which is assumed to be
independent of )\, define the normalized wave numbers k=
k.Lo and k' =k Ly, and introduce € = Lo/\|. The spectra are
normalized as S5(k2) = Sy(k.)/Lo and S5p(k") = Sap(k | )/LE.

[20] The total normalized perpendicular mean free path

1 = A /Ly in equation (4) is therefore of the form \| =
Flte) + PP(e, X)), with I’ and PP depending on the
fluctuation spectra, and understood to be normalized to the
characteristic length scale L.

[21] In the limit ¢ — O the slab term contribution to A’} in
equation (4), Ij = ling Fl(¢), becomes

dszSI (kz) ]O dkL 27TkLS2D (kl)-‘

4)

0

@[ dESik)e Vin?
O TN | @xk23 T 2B

Sa0), (5

—00

since lim,_o /(> + ¢*) = 76(q), the Dirac delta function.
The diffusion coefficient of magnetic field lines due to slab
turbulence is given by D} = wS:(0)/(2B3) [e.g. Jokipii,
1966], and thus here L' = v/3a>D3.

[22] The 2D contribution to A} in equation (4) is

2 x 27mk* S* - (k*
Poex) =5 [ o T 2() (6)

LR N k23
0

[23] The limit of equation (6) when ¢ — 0 may or may
not converge, depending on the behavior of S55(k" ) at small
wave numbers.

[24] In this regard, it is notable that a number of studies
have incorporated 2D and quasi-2D spectrum models that
are finite when evaluated in a periodic box, but become
singular (but with finite energy) in the above sense when
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passing to the unbounded limit [see also, Matthaeus et al.,
2007].

[25] Suppose the normalized modal 2D spectrum behaves
as S5p(k}) ~ k%, as k1 — 0. Then, if p > 0 the integral
PPe — 0, 1) = PPy(\}) is well behaved and one obtains

3@ | 1 [ 2w (k)
o) =2 | / aKt ao\KL) | 7
0 ( L) >‘L [233 / L kj_ ( )

The quantity in square brackets is D35, the square of the
diffusion coefficient of the magnetic field lines due to 2D
turbulence [Matthaeus et al., 1995; Ruffolo et al., 2004],
implying I3°(\7) ~ D5h/\Y.

[26] Another possibility is that p < 0, in which case the
diffusion coefficient D5, of the field lines is divergent, as is
the € — 0 limit of equation (6). In this case one can impose
a lower limit on &} given by Lo/L, where L is a measure of
the system size which provides an effective cutoff. The
energy remains finite as long as p > —2. Then the 2D
integral expression in equation (7) scales as ~log(L/Lg)
when p = 0, and as N(L/Lo)lf”| for p < 0. In these cases both
the field line diffusion and the contribution to particle
diffusion from 2D turbulence are determined by the system
size L. Nevertheless, with the cutoff procedure in place, the
idea of field line diffusion is restored and the 2D
contribution may still be written as a finite (but perhaps
very large) quantity D3p. A similar cutoff procedure might
be introduced for the slab contribution (equation (5)) when
the integral diverges, because the quantity Sy(0) o< A, is
unbounded, with A, the correlation length of the turbu-
lence. However we would expect the slab fluctuations to
have finite energy and become uncorrelated at large
separations and this leads to a finite slab contribution.

[27] Consequently, in either the well behaved case, or
divergent cases with a large scale cutoff, the two separate
limits (i.e. £ + ZP(\")) combine to yield

X, = V3dDjy + 3a D5 /X (8)

This equation is nearly identical to the quadratic equation
for the total diffusion coefficient of magnetic field lines
obtained by Matthaeus et al. [1995], except that here it
refers to a limiting form of NLGC particle diffusion,
namely, the limit when the parallel mean free path tends to
infinity.

[28] If the 2D turbulence is dominant, as it is in the solar
wind, the second term on the r.h.s. of equation (8) is
dominant and in this case NLGC predicts an asymptotic
high energy (weak scattering) behavior that is very close to
an FLRW limit. Furthermore, if one assumes that a* = 1/3,
NLGC yields exactly the special case of FLRW transport
discussed above, namely A\, = D,p. It is of interest to note
that this value of ¢* = 1/3 has been found empirically from
numerical simulations to adequately describe perpendicular
particle diffusion, especially in strong turbulence when the
particles are frequently backscattered along the magnetic
field [Matthaeus et al., 2003; Minnie et al., 2007]. Thus, we
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Figure 2. Comparison between simulation results (sym-
bols) and theoretical predictions from the nonlinear guiding
center theory of Matthaeus et al. [2003] (solid lines). The
dashed lines are the values for the field line diffusion
coefficients from the simulations. The symbols indicate that
the perpendicular mean free path is saturating at a value
determined by the box size L, rather than behaving as an
increasing power-law in )| as it presumably would in an
infinite domain with the assumed spectral law extending to
infinitely large scale. Note that the diffusion coefficient for
the field lines would also diverge in this case, as the
ultrascale would diverge as VL as box size L — co.

expect that the limiting form of perpendicular particle
diffusion at large parallel mean free path will be close to an
FLRW-type transport with x, o vD .

7. Classical Scattering

[29] As an aside, we discuss the classical scattering
relation [e.g. Gleeson, 1969]

Al
N o= 9

where ry, is the maximal Larmor radius, i.e., 90° pitch-angle
particles. We shall look especially at the applicability of this
theory to the description of perpendicular diffusion at high
particle rigidities. Giacalone and Jokipii [1999] concluded
that the classical scattering relation above is the appropriate
value to use for the perpendicular mean free path for high
rigidity particles.

[30] From quasilinear theory (QLT) [e.g. Jokipii, 1966;
Zank et al., 1998; Giacalone and Jokipii, 1999] and the
weakly nonlinear theory (WNLT) [Shalchi et al., 2004b] the
parallel mean free path is expected to scale as 71, for high
rigidity particles. This implies that the ratio Aj/ry, will
increase with increasing particle rigidity, which results in

2
)\Nrﬂ

1~ 0
A (10)
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at high rigidities. From all of the QLT references above one
finds a parallel mean free path on the order of

a~ e BS
I\ o>

(11)
with \. and 6B the correlation scale and variance of the
turbulence, respectively, and B, the magnitude of the
background magnetic field. Using this value for the parallel
mean free path in equation (10) one immediately obtains

5B?

/\J_ NAC?{Z}7

(12)

which is consistent with the FLRW limit of particle
diffusion.

[31] It is therefore our contention that the classical scat-
tering relation between parallel and perpendicular diffusion
coefficients is appropriate at sufficiently large rigidities
because the parallel mean free path is sufficiently large
and the particles are tending to follow the field lines.

8. Analytic Solutions and Simulation Results in a
Finite Domain

[32] We have seen above that the NLGC theory of
perpendicular transport, embodied by equation (3), admits
the possibility that FLRW transport is recovered when )| —
oo, usually in the high energy limit. However, previous
analytical solutions of equation (3) lead to A\ /\”/ 3 when
A — oo [Shalchi et al., 2004a; Zank et al., 2004], which of
course implies that A, — oo. The result in equation (8)
therefore seems to be contradictory to the results from
previous studies.

[33] Based on the above discussion, we can see that this
apparent discrepancy is easily resolved by examination of
the large scale behavior of the fluctuation spectra. The
resolution is given most effectively by example. The
behavior A\ )\ﬁ/ 3 at large A results from equation (6)
when using a spectrum with p = —1. In Figure 2 we present
solutions of equation (4) for different values of the magnetic
fluctuation amplitude as a function of the parallel mean free
path. The solutions of equation (4), denoted by the solid
lines, clearly increase monotonically with increasing A,
becoming larger than the appropriate FLRW limits denoted
by the dashed lines at some large value of A. The symbols
are the simulation results from Minnie [2006]. One can see
that the numerical results, necessarily computed in a finite
size box, roll over to the flat behavior expected of FLRW-
type perpendicular transport. This occurs even though the
functional form of the 2D spectrum is similar to that used by
Shalchi et al. [2004a] and Zank et al. [2004] except that in
this case the spectral density includes a minimum
wavenumber 1/L, where L is the box size. Consequently,
the infinite homogeneous limit in which A, )\ﬁB is
obtained correctly in the analytical theory, but it is not
attained in the simulation. Instead, since the value of the
spectral index is p = —1, the effective value of the ultrascale
becomes a quantity of the order of v/, and when A > Lby
a sufficient margin, FLRW transport is recovered. Conse-
quently, finite size system effects are seen to restore the
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“beads on a string” intuitive picture, but perhaps for
somewhat more subtle reasons than previously anticipated.
In cases in which FLRW perpendicular transport is
recovered, we see that this behavior is approached
asymptotically as the parallel mean free path exceeds the
smaller of the system size or the ultrascale.

9. Discussion and Conclusions

[34] We can now confront, at least partially, what we
mean by particles following field lines, and the “FLRW
limit”. Very low energy particles may sample only very
weak turbulence effects and might therefore follow field
lines like beads on a string. This is more likely for electrons
than protons because their A\j may be very large at low
energy due to dissipation range steepening of the fluctuation
spectrum [Bieber et al., 1994]. However, when parallel
scattering is strong enough, this view must change, and we
know from previous work that for a wide range in energy,
particles can depart from a random walk proportional to the
field line random walk, due to parallel scattering. This can
cause subdiffusion, or when the fluctuations have sufficient
transverse complexity, diffusion might be restored, but not
at a rate proportional to FLRW.

[35] In this paper we have examined several alternatives
for perpendicular transport at high energies, based on the
behavior of the 2D modal spectrum at very low wave-
number S(k,) ~ 1. When the ultrascale is well defined
[Matthaeus et al., 2007], for a spectral index p > 0, one
anticipates that particles of sufficiently large A\ will allow
recovery of FLRW transport. If the spectral form is
pathological at large scales (p = —1) and the ultrascale
diverges, the field lines themselves never arrive at a
diffusive limit, while particles continue to diffuse, but with
AL X )\ﬁB (in NLGC theory). This is not an FLRW transport
regime. However, for p < 0, a finite system size might
introduce a maximum scale that can be sampled, and then
this scale fixes an effective ultrascale. In this case the field
lines are diffusive, and particle transport approaches an
FLRW regime at high energy when the parallel mean free
path greatly exceeds the smaller of the ultrascale and the
system size. This provides some answers to the question
“When do particle follow field lines?” The answer appears
to be more involved than might have been anticipated, but
this seems to be unavoidable. The transport properties of
particles and field lines are intertwined with one another,
and the intuition that particles always follow field lines
needs to be carefully examined in various regimes of
turbulence length scales, system size, and particle energy.
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