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ABSTRACT

Interplanetary magnetic flux ropes have significant effects on the distribution of energetic particles in space. Flux
ropes can confine solar energetic particles (SEPs) for hours, and have relatively low densities of Galactic cosmic
rays (GCRs), as seen during second-stage Forbush decreases. As particle diffusion is apparently inhibited across
the flux rope boundary, we suggest that guiding center drifts could play a significant role in particle motion into
and out of the flux ropes. We develop an analytic model of the magnetic field in an interplanetary magnetic flux
rope attached to the Sun at both ends, in quasi-toroidal coordinates, with the realistic features of a flux rope cross
section that is small near the Sun, expanding with distance from the Sun, and field lines that are wound less tightly
close to the Sun due to stretching by the solar wind. We calculate the particle drift velocity field due to the magnetic
field curvature and gradient as a function of position and pitch-angle cosine, and trace particle guiding center orbits
numerically, assuming conservation of the first adiabatic invariant. We find that SEPs in the interior of a flux rope
can have drift orbits that are trapped for long times, as in a tokamak configuration, with resonant escape features as
a function of the winding number. For Forbush decreases of GCRs, the drifts should contribute to a unidirectional
anisotropy and net flow from one leg of the loop to the other, in a direction determined by the poloidal field direction.
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1. INTRODUCTION

Coronal mass ejections (CMEs), transient events in which
magnetized plasma is ejected from the Sun (Tousey 1973),
can often drag solar magnetic flux ropes into the interplanetary
medium to the Earth and beyond, even to the outer heliosphere
(Burlaga et al. 1981b; Burlaga 1995). The scientific interest
in such interplanetary magnetic flux ropes and associated
CME plasma focuses on their magnetic topology, often with
field lines helically wrapped around a curved central axis
(Burlaga et al. 1981b), their frequent association with distinctive
plasma properties (see Gosling 1990, and references therein),
their disturbance of the interplanetary medium and shock
formation (e.g., Burlaga et al. 1981b; Gosling & McComas
1987; Manchester et al. 2004), and impacts of the shocks and
strong magnetic fields on the Earth’s magnetosphere, leading
to geomagnetic storms (e.g., Gonzalez & Tsurutani 1987;
Marubashi 2000), which are also of practical interest for their
space weather effects on human activities.

Another aspect of space weather is the prompt arrival of solar
energetic particles (SEPs) to near-Earth space. Of particular
interest are ground level enhancements (GLEs), i.e., events
in which the flux of relativistic SEP ions of energy �1 GeV
nucleon−1 is so high that there is a measurable enhancement
over the ambient Galactic cosmic ray (GCR) flux (Forbush 1946;
Meyer et al. 1956). These relativistic solar particles, as well as
subrelativistic SEPs that arrive as a strong, prompt pulse, are
associated with space weather effects such as satellite failures
and radiation hazards to astronauts and air crews (Wilson et al.
2003). These SEPs can be accelerated either by impulsive solar
flares or by CME-driven shocks, with the latter providing a more
intense flux (Reames 1999).

The most intense and energetic beams of SEPs (such as
those during GLEs) are produced over short time durations
(Bieber et al. 2002, 2004, 2005; Ruffolo et al. 2006), with
injection start times that are consistent with acceleration at a

CME shock while it was close to the Sun (Kahler 1994; Tylka
et al. 2003; Bieber et al. 2004, 2005; Gopalswamy et al. 2005;
Reames 2009). Because major solar events frequently occur in a
sequence of several events from the same solar active region, it
is not uncommon for SEPs to be injected into an interplanetary
medium that was disturbed due to a preceding CME (Bieber
et al. 2002).

Recently, particular interest has focused on transport effects
on the temporal evolution and directional distribution of SEPs
injected inside an interplanetary magnetic flux rope due to
a preceding CME (Torsti et al. 2004; Kocharov et al. 2005,
2007; Bieber et al. 2005; Miroshnichenko et al. 2005; Ruffolo
et al. 2006; Sáiz et al. 2008), as shown schematically in
Figure 1. Interplanetary magnetic flux ropes are associated with
low magnetic fluctuations and weak pitch-angle scattering of
particles (Burlaga et al. 1981a; Tranquille et al. 1987), so they
provide an interplanetary “highway” for SEPs to arrive as an
intense beam (Torsti et al. 2004). Even after the weak pitch-angle
scattering eventually spreads out the directional distribution,
these particles can be trapped for extended periods by the closed
magnetic field lines. For example, during the GLE of 1989
October 22, the propagation of SEPs inside a flux rope led to an
intense, beam-like pulse of particles immediately after the solar
event, and at long times the relativistic solar particle intensity
was unusually persistent, with an exponential decay over 3 hr
(Ruffolo et al. 2006). These features of propagation inside a flux
rope have implications for the space weather effects of SEPs.

Another example of the effects of an interplanetary magnetic
flux rope on energetic particles is the second stage of a Forbush
decrease in GCRs (Forbush 1937; Hess & Demmelmair 1937).
While the first stage begins as a CME-driven shock passes
the detector, the second stage (if present) is associated with
the passage of CME ejecta (Cane et al. 1996). The maximum
decrease is up to ∼ 25% at a rigidity of ≈ 1 GV. Bidirectional
flows are frequently observed, which is evidence for the passage
of a closed interplanetary magnetic flux rope (Richardson et al.
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Figure 1. Illustration of the effect of an interplanetary magnetic flux rope (black)
on energetic particles in space. The particles basically follow field lines, so
their motion across magnetic flux surfaces is inhibited. Solar energetic particles
(SEPs; red) can be trapped inside the flux rope for extended time periods.
Galactic cosmic rays (GCRs; blue) have a lower density inside a flux rope, a
phenomenon known as a Forbush decrease, in part because it is difficult for
GCRs to enter the flux rope from outside. The present work considers the drift
orbits of particles in the flux rope, and to what extent guiding center drifts allow
particles to cross magnetic flux surfaces and enter or exit the flux rope. One of
our results, schematically indicated here, is that drifts are predominantly inward
along one leg of the loop and outward along the other, which should contribute
to a unidirectional anisotropy and net flow of GCRs in one direction.

2000). Evidently, the particle density inside the loop is not in
equilibrium with that outside, apparently because GCRs from
outside cannot easily enter the flux rope, or require an extended
timescale to do so.

Here, we address the mechanisms by which energetic par-
ticles can enter or exit an interplanetary magnetic flux rope,
or conversely how SEPs can be trapped and the entrance of
GCRs can be inhibited (see Figure 1). To enter or exit a closed
magnetic field structure, particles must evidently cross mag-
netic field lines, either by gradient and curvature drifts, or by
a particular type of diffusion in which particles no longer fol-
low the same field line. To expand on this, we note that par-
ticle transport perpendicular to the large-scale field has two
mutually interacting physical mechanisms: (1) particles follow
turbulent field lines that undergo a random walk with respect
to the large-scale field (Jokipii 1966), which eventually yields
subdiffusion of particles in the perpendicular direction (Get-
mantsev 1963; Urch 1977; Kóta & Jokipii 2000); and (2) the
particle motion ceases to be correlated with the direction of its
original guiding field line, which yields diffusion at late times
(Qin et al. 2002; Matthaeus et al. 2003; Ruffolo et al. 2008).
The combination of these two processes is sometimes called
“cross-field” transport, though it would be more accurate to re-
serve that term for mechanism 2. Mechanism 1 alone cannot
explain how particles transfer between closed field lines in the
flux rope and open field lines outside. This major component
of perpendicular diffusion may be effective either inside or out-
side the flux rope, but not across the flux rope boundary, where
truly cross-field transport is needed. Indeed, observations of
both SEPs (e.g., Lario et al. 2004) and GCRs (e.g., Cane 2000)
indicate particularly sharp gradients in particle density across
the boundaries of flux ropes, supporting the idea that diffusion

is relatively ineffective at transferring particles across flux rope
boundaries.

The relative ineffectiveness of perpendicular diffusion sug-
gests that gradient and curvature drifts due to the large-scale
magnetic field play a major role, or the dominant role, in parti-
cle transfer across the boundary of an interplanetary magnetic
flux rope. Indeed, a proper understanding of particle transport
inside the flux rope, especially over long timescales, requires an
understanding of the drift motions, which to date have not been
specifically examined for a realistic magnetic field model.

Therefore, the present work investigates the drift orbits of
particles in a model interplanetary magnetic flux rope. To
capture the essential large-scale properties of a flux rope and
provide an easy prescription for the field gradient computations
necessary to estimate the drifts, we develop a global analytic
model of an interplanetary magnetic flux rope. We require the
field winding to be tighter at the outermost portion of the flux
rope, while the field lines are straighter near the Sun due to
stretching by the solar wind. The cross-sectional area of the
flux rope also depends on distance from the Sun, and should
be proportional to distance squared at a small distance from the
Sun, a feature that is crucial for proper magnetic mirroring of
particles. We find that the winding of field lines in the flux rope
inhibits the escape of SEPs from the inner portion, analogous to
the well-known trapping of particles in tokamak experiments on
magnetic confinement fusion (Tamm 1961a, 1961b; Sakharov
1961). However, in the outer portion of the flux rope, the drift
orbits allow particles to enter or exit the flux rope. Interestingly,
the particles should predominantly drift in along one leg of the
rope and out along the other, contributing to a unidirectional
flow and anisotropy.

2. BASIC REQUIREMENTS OF A FLUX ROPE MODEL

2.1. Lessons and Limitations of Simple Models

First, let us review what can be learned from the drift velocity
of energetic particles in simple models of magnetic flux ropes,
and why a more detailed model is required to capture the realistic
features of drift orbits in interplanetary flux ropes.

Using μ as the cosine of the pitch angle, i.e., the angle between
the particle velocity v and the magnetic field, the gradient drift
for a particle of mass m and charge q is given by

vg = γm(1 − μ2)v2

2qB3
B × ∇B (1)

and the curvature drift is

vc = γmμ2v2

qB2
B × κ = −γmμ2v2

qB2
B × Rc

R2
c

, (2)

where γ = (1 − v2/c2)−1/2, c is the speed of light, κ is the
curvature, and Rc is the radius of curvature of the field line,
expressed as a vector outward from the center of curvature,
satisfying

κ = − Rc

R2
c

= (b̂ · ∇)b̂, (3)

where b̂ is the unit vector along B.
Interplanetary flux ropes have frequently been modeled as

straight, cylindrical flux ropes. In cylindrical coordinates, the
magnetic field varies only with distance ρ from the loop axis,
and flux surfaces are cylinders of constant ρ. In this case, ∇B is
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in the ρ̂ direction, and from the cross-product in Equation (1), vg

is then along the flux surface and perpendicular to B. Similarly,
Rc is along ρ̂ and vc is in the same direction as vg. Thus, the
drift velocity cannot remove a particle from the flux surface.

However, actual flux ropes are curved (see Figure 1), leading
to an additional curvature drift out of the plane of the loop. In the
absence of field line winding, this curvature drift would allow
energetic particles to rapidly escape.

Thus, we might consider a toroidal flux rope, in which the
cylinder is curved so the loop axis forms a circle. When the
field lines wind around the loop axis, the particle orbits along
the field lines experience a curvature drift that is sometimes
inward and sometimes outward, leading to trapping of a large
portion of the drift orbits. This trapping effect is exploited in
tokamak devices for plasma confinement for controlled nuclear
fusion (Boyd & Sanderson 2003), and we shall refer to it as the
“tokamak effect.”

A key motivation for the present work is to explore to what
extent the tokamak effect influences the escape of SEPs and the
entrance and exit of GCRs from interplanetary magnetic flux
ropes (see Ruffolo et al. 2006). However, we cannot directly
make use of results for toroidal flux ropes (tokamaks), in part
because the winding rate of the flux rope is likely to be non-
uniform (Vandas et al. 2002), and also in part because of the
convergence of field lines toward the Sun.

The convergence of field lines toward the Sun suggests
another idealized configuration: a conical flux rope. The analog
to the axial field in the above flux rope models is a radial field
spreading out from the Sun, to which an azimuthal (winding)
field is added. Compared with the cylindrical flux rope, in which
the drift velocity is along the flux surface, for a conical flux
rope the vectors ∇B and Rc are no longer perpendicular to the
flux surface and the drift velocity has an outward or inward
component, depending on the direction of the winding field.

We can see that interplanetary flux ropes combine features
of toroidal flux ropes and conical flux ropes, as indicated in
Figure 2. Based on the approximately conical configuration near
the Sun, we might expect the net drift to be outward along one
leg of the loop and inward along the other, and it is not clear
whether the tokamak effect will still trap the drift orbits when
the toroidal flux rope is modified in this way. To clarify these
multiple effects, in the present work we develop a global analytic
model of the magnetic fields of an interplanetary flux rope.

2.2. Basic Requirements for Realistic Drift Orbits

In order to obtain realistic drift orbits, we identify the
following desirable requirements for a global, analytic model
of an interplanetary magnetic flux rope.

1. The magnetic field must remain divergence-free throughout
the flux rope.

2. The magnetic field lines are less twisted close to the Sun
(Marubashi 1997). Even if the pre-eruption coronal flux
rope were twisted roughly uniformly, there is likely to be
stronger stretching of the magnetic cloud along its legs
than along its forward portion, tending to yield a lower
twist along the legs of the flux rope.

3. Close to the Sun, the magnetic field lines are nearly radial,
so the field is directed toward or away from the Sun and
its magnitude varies as the distance squared. This is a basic
requirement near the Sun where the solar wind expands
radially and the magnetic field lines are not strongly twisted.
As a result, the flux rope has a wider cross section farther
from the Sun.

Figure 2. Global analytic magnetic flux rope model developed in this work. We
use quasi-toroidal coordinates relative to a circle of radius R, corresponding to
the axis of the flux rope: r is the distance from the axis, φ is the angle along
the axis, and θ is the angle in a cross-sectional plane. The Sun is along the
axis at φ = ±π . Each magnetic field line winds around a flux surface of radius
r = a cos(φ/2), with a nearly radial magnetic field near the Sun. Here, a is the
radius of the flux surface at the apex of the loop (φ = 0). The winding rate
goes as cos(φ/2), so the field lines have less winding (more stretching) near the
Sun, and the winding decreases for outer flux surfaces as e−a/a0 . The winding
number w is the maximum number of times a field line rotates in θ along the
entire flux rope. The field lines shown here are for w = 10. For a sample location
on a field line, we indicate the relative gradient (∇B)/B and curvature κ , which
are used in the calculation of the drift velocities.

4. The flux rope has a circular cross section. This is not
completely realistic; MHD simulations show that flux ropes
are flattened in the radial direction due to the interaction
with the solar wind (Vandas et al. 1996, 2002; Manchester
et al. 2004). Nevertheless, the assumption of a circular cross
section is common and is a useful simplification for the
purposes of this initial study of drift orbits. Furthermore,
our key results concerning SEPs and GCRs are averaged
over the poloidal angle, reducing the importance of the
precise geometry as a function of this angle.

5. The magnetic field components as a function of distance
from the flux rope axis should be realistic.

We presume that the dynamics of the magnetic field are
strongly affected by the motion and expansion of the CME,
and therefore do not require a magnetic force-free equilibrium.
However, for the timescale of the motion of high-energy
particles over the length of the flux rope, we can neglect the
time dependence of the large-scale magnetic field.

3. GLOBAL FLUX ROPE MODEL AND DRIFT VELOCITY

To satisfy the requirements in Section 2.2, we have developed
a new, global analytic model of magnetic fields in a flux rope. We
have chosen to use quasi-toroidal coordinates (r, φ, θ ; Mercier
1962; Sy 1981) as illustrated in Figure 2. These are related to
the Cartesian coordinates by

x = (R + r cos θ ) cos φ, (4)

y = (R + r cos θ ) sin φ, (5)

z = r sin θ, (6)
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where φ ∈ [−π, π ), θ ∈ [0, 2π ), and r ∈ [0,∞). The metric
elements are (hr, hφ, hθ ) = (1, R + r cos θ, r). The axis of the
flux rope, at r = 0, is a circle of radius R, with the Sun located
at φ = ±π . A drawback of this model is that the two legs of
the loop approach the Sun from opposite directions, whereas the
angle between the two legs would be substantially smaller for
an actual CME flux rope. In other words, the shape of a CME
flux rope axis is more like a teardrop (Marubashi 1997; Vandas
et al. 2002). In any case, we believe that the conclusions of this
work are not very sensitive to the shape of the loop axis, and
we use a circular shape (see Figure 2) in order to develop an
analytic model with the relatively straightforward quasi-toroidal
coordinates. We generally use R = 0.5 AU so that the distance
from the Sun to the loop apex (φ = 0) is 1 AU.

Next, we define the flux surfaces and magnetic field lines
according to our requirements. In order to obtain radial magnetic
field lines near the Sun, the flux surfaces should have r → 0 as
φ → ±π . Thus, we define flux surfaces of circular cross section
by

r = a cos(φ/2), (7)

where a represents the maximum radius of the flux surface (at
the loop apex, φ = 0). We allow a to vary from zero at the loop
axis to am at the outer surface of the flux rope, and we generally
set am to 0.1 AU. To define individual field lines, we specify
θ (φ) by

θ = wπe−a/a0 sin(φ/2) + θ0. (8)

The factor of sin(φ/2) ensures that the winding as a function of
φ is slow (θ is nearly constant) near φ = ±π and is faster
elsewhere, as required in Section 2. The exponential factor
provides a more realistic radial dependence, as will be discussed
shortly. Then, w is the winding number, representing the total
number of complete circuits in θ over the entire flux rope for
a close to zero. For general a, the number of complete circuits
is we−a/a0 . Now r(φ) and θ (φ) define a field line labeled by a
and θ0.

Our formulation allows w to be positive or negative, which
defines the sense of the winding. When our w value is positive,
the flux rope is classified as an “anti-parallel” or “left-handed”
type (i.e., when the fingers of your left hand follow Bθ , your left
thumb indicates the sign of Bφ ; Marubashi 2002). The sign of
w also defines the sign of the magnetic helicity (see, e.g., Dasso
et al. 2003), and in our case a positive w implies a negative
helicity.

The above specification of the field lines then constrains the
magnetic field components. Since the field line vector is parallel
to the magnetic field vector, the field line trajectory is related to
field components by

dr

Br

= rdθ

Bθ

= (R + r cos θ )dφ

Bφ

, (9)

Br = Bφ

R + r cos θ

dr

dφ
, (10)

Bθ = rBφ

R + r cos θ

dθ

dφ
, (11)

where the derivatives are evaluated along a field line, i.e., at
constant a and θ0.

We are still free to specify the radial dependence of the axial
magnetic field, Bφ . Observations of interplanetary magnetic
clouds typically indicate that the magnetic field is more intense
toward the loop axis, and does not tend to zero at the flux rope

boundary. Motivated by the form of Gold & Hoyle (1960) with
Bφ = B0/(1 + b2r2), we use

Bφ = B0

(a2/a2
0 + 1)3/2

1

cos2(φ/2)
, (12)

where we set B0 = 15 nT and a0 = 0.07 AU. Here, B0 represents
the field along the axis at the loop apex. Our choice of B0 is
based on the estimates of ∼ 13.8–15.9 nT for the well-known
interplanetary flux rope of 1995 October 18–19 (Dasso et al.
2005). We also set the flux rope boundary at a = 0.1 AU, which
is within the ranges of flux rope radii from surveys of Lepping
et al. (1990), who found 0.14±0.05 AU, and Zhao et al. (2001),
who found 0.11±0.05 AU. Note that along a field line, Bφ must
be inversely proportional to the r–θ area of a set of neighboring
field lines. In our model, for small, fixed ranges of a and θ0
that area varies as cos2(φ/2), hence the factor of 1/ cos2(φ/2)
in Equation (12).

In Figure 3, we compare our field components as a function of
r with those of three previous models with nonlinear functional
dependences (Lundquist 1950; Gold & Hoyle 1960; Krall &
Chen 2005), which treated the flux rope as cylindrical. To better
compare the functional dependences, in each case we choose
parameters so that Bφ(r = 0) = 15 nT and the fields decrease
over ∼ 0.1 AU. Specifically, for the model of Lundquist (1950)
we set the flux rope boundary to 0.1 AU, and for that of Gold
& Hoyle (1960) we use b = 22 AU−1. These two models have
been successfully used to fit observational data (e.g., Dasso et al.
2005). We also consider the model of Krall & Chen (2005) as
in their Equations (15) and (16), with a = 0.1 AU and with
the field amplitudes scaled to give Bφ(r = 0) = 15 nT. At the
apex, where φ = 0 and r = a, our model for Bφ is reasonably
consistent with previous models up to our flux rope boundary at
r = 0.1 AU (see Figure 3(a)).

Using Equations (7), (8), and (12), we obtain each magnetic
field component in quasi-toroidal coordinates:

Br = −B0

2

sin(φ/2)[
r2/a2

0 + cos2(φ/2)
]3/2

r

(R + r cos θ )
, (13)

Bφ = B0
cos(φ/2)[

r2
/
a2

0 + cos2(φ/2)
]3/2 , (14)

Bθ = wB0
π

2

cos2(φ/2)[
r2

/
a2

0 + cos2(φ/2)
]3/2

r

(R + r cos θ )
e−r/[a0 cos(φ/2)].

(15)

The divergence of B is zero by construction.
In Figures 3(b) and (c), we also compare the poloidal field

and total field from previous models with those of our model
at the loop apex (where Br = 0). Considering our model for
varying winding number (solid lines), we conclude that w = 10
is reasonably consistent with previous models. In any case, we
will also consider some implications of varying the winding
number w.

Given our analytic magnetic field model, we proceed to
consider the drift velocity of an energetic particle using
Equations (1) and (2). Figure 4 shows the combined (gradi-
ent plus curvature) drift velocity components for our magnetic
field model with w = 10. Here, we consider protons of kinetic
energy E = 1 GeV (v = 0.875c) and pitch angle 45◦ for a
pitch-angle cosine μ = 1/

√
2. Drift velocity values for other
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Figure 3. Radial dependence of the magnetic field in our flux rope model
for varying winding number w at the loop apex (solid lines), in comparison
with previous analytic models of cylindrical flux ropes: Gold & Hoyle (1960;
dashed lines), Lundquist (1950; dash-dotted lines), and Krall & Chen (2005;
dotted lines). Here, w = 10 provides a reasonable agreement with the previous
models. In our model, the flux surface parameter a has a maximum value of
am = 0.1 AU, corresponding to r = 0.1 AU at the loop apex (vertical lines).

particle species and speeds can be inferred using the scaling
from Equations (1) and (2).

Several features of the drift velocity components in
Figure 4 are consistent with the general considerations in
Section 2. The vr component is generally smaller in magni-
tude than the other components (note the expanded scale for vr

in Figure 4); this component would be zero for a cylindrical flux
rope. All drift velocity components are much weaker near the
Sun (e.g., at φ = 0.9π ; see short-dashed lines in Figure 4) than
at other locations. This is because the magnetic field increases
as field lines converge toward the Sun. While vφ and vθ do not
vary strongly with θ , vr has both positive and negative values,
and is strongest at θ for which r̂ is nearly normal to the plane of
the flux rope axis. This is due to the curvature drift associated

Figure 4. Total gradient and curvature drift velocity of energetic particles in a
flux rope as a function of θ along the flux surfaces at a = 0.025 AU (left panels)
and a = 0.1 AU (right panels) at φ = 0 (the loop apex, solid lines), φ = 0.5π

(long-dashed lines), and φ = 0.9π (near the Sun, short-dashed lines). Here,
we use w = 10 and protons of kinetic energy E = 1 GeV (v = 0.875c), for
a pitch angle of 45◦ (μ = 1/

√
2). The drift velocity is dominated by θ - and

φ-components; note the expanded scale used for vr .

with the large-scale curvature of the loop axis. As the field lines
twist along different values of θ , the particle experiences both
positive and negative vr . This is the tokamak effect, which leads
to the trapping of drift orbits (Boyd & Sanderson 2003). For
φ = 0.5π , one can see a substantial imbalance, with a larger
range of θ with negative vr . Such an imbalance is consistent
with our expectations for an approximately conical flux rope in
which the field lines expand with distance along the loop axis
(see Section 2.1). Because these features are all consistent with
general considerations, we expect that they are not peculiar to
our analytic model, and should apply to any realistic interplan-
etary magnetic flux rope configuration.

There are numerous symmetries regarding the magnetic fields
and drifts in our model. From Equations (1) and (2), we see that
the drift velocity is invariant under μ → −μ. When B0 → −B0,
reversing the field direction, the drift velocity is also reversed.

In our model, like most analytic and numerical models, the
magnetic flux surfaces are invariant under a reflection across
the x–y plane (the plane of the loop axis), corresponding to
θ → −θ . In general, a field line defined by Equations (7)
and (8) is then transformed into a different field line with w →
−w and θ0 → −θ0. Therefore, this reflection symmetry pro-
vides us information about the effect of changing w in the model.

To consider the effect of this reflection on vector fields, we
apply θ → −θ and w → −w, and find that Br and Bφ remain
the same, while the poloidal component Bθ changes to −Bθ
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(note further that all three magnetic field components are even
functions of θ ) and the drift velocity components (which are not
even functions of θ ) transform as vr → −vr , vφ → −vφ , and
vθ → vθ .

The flux surfaces in our model are also invariant under a re-
flection across the x–z plane, corresponding to φ → −φ. (Note,
however, that this does not apply to actual interplanetary flux
ropes, because there are asymmetric forces in the interplanetary
medium; see Marubashi 1997; Vandas et al. 2002.) According
to Equations (7) and (8), each field line is transformed to a
field line with w → −w (but the same θ0). The direction of
the toroidal field also changes under this transformation, with
B0 → −B0. Upon reversing φ, w, and B0, Equation (12) tells us
that Bφ → −Bφ , and from Equations (10) and (11) we see that
Br and Bθ are unchanged. Then, the drift velocity components
transform as vr → −vr , vφ → vφ , and vθ → −vθ .

Finally, it is useful to consider the combination of those
two reflection operations followed by B0 → −B0, resulting
in φ → −φ and θ → −θ for fixed w and B0. In other words,
this combined operation maps a field line onto itself. The two
reflections are equivalent to rotating by 180◦ about the x-axis,
and the θ - and φ-components of vector fields are reversed. Then,
after taking B0 → −B0, those components are unchanged and
the r-component is reversed. We obtain

Br (r, φ, θ ) = −Br (r,−φ,−θ )

Bφ(r, φ, θ ) = Bφ(r,−φ,−θ )

Bθ (r, φ, θ ) = Bθ (r,−φ,−θ )
(16)

and
vr (r, φ, θ ) = −vr (r,−φ,−θ )

vφ(r, φ, θ ) = vφ(r,−φ,−θ )

vθ (r, φ, θ ) = vθ (r,−φ,−θ )
(17)

for fixed field parameters w and B0. Thus, in Figure 4 we show
results only for φ � 0, and results for negative φ can be inferred
from these symmetry relations.

In the following sections, we examine the implications of the
drift velocities for the escape of SEPs from the interior of a
flux rope, and the inflow and outflow of GCRs at the flux rope
surface.

4. DRIFT ORBITS OF SOLAR ENERGETIC PARTICLES

Now let us consider the drift orbits of energetic particles,
such as SEPs, in the interior of a flux rope, and what conditions
are necessary for their trapping due to the tokamak effect. For
this initial study of the properties of drift orbits, we employ the
simplifying assumptions of our global, analytic model, as well
as the assumption of a fixed interplanetary magnetic flux rope.
Later in this section, we will address the extent to which our
results would be affected by the expansion of actual flux ropes,
and other physical effects that are not accounted for by the drift
orbits.

Here, we concentrate on relativistic solar particles of energy
1 GeV. As discussed in Section 1, such particles are typically
injected over short timescales, potentially allowing the determi-
nation of an escape time (i.e., the duration of trapping). For the
GLE of 2003 October 28, associated with the well-known “Hal-
loween” geomagnetic storm, the relativistic solar proton flux
remained elevated and nearly isotropic for 19 hr, which may
be associated with propagation inside a closed magnetic flux
rope (Bieber et al. 2005; Miroshnichenko et al. 2005; Sáiz et al.
2008). For the GLE of 1989 October 22, Ruffolo et al. (2006)

Figure 5. Contour plots of trapping time in hr for drift orbits over 25 hr of solar
energetic particles injected at Z = 0.1 AU from the Sun along one leg of the
loop as a function of the initial position for varying winding number, w. For no
winding (w = 0), the particles readily escape. For w � 1.5, drift orbits in the
inner portion of the flux rope are trapped for an extended time (as in tokamak
experiments for controlled nuclear fusion). There is also a resonance effect:
when w is close to an integral multiple of 3.75, some drift orbits from deep
inside the loop can escape quickly. When drift orbits remain trapped for tens of
hours, other effects can cause particles to escape more quickly (see the text for
details).

found clear evidence for propagation in a closed magnetic loop,
and the observed SEP density decayed exponentially with an
escape time of 3 hr. We note that in addition to the drift orbit
motion, i.e., the systematic guiding center motion, SEPs are also
subject to the stochastic processes of pitch-angle scattering and
perpendicular diffusion, which tend to make the particles es-
cape faster. Thus, the drift orbits must be trapped for at least as
long as the observed particle density decay time, i.e., for several
hours in some cases. In other words, trapping of drift orbits is a
necessary but not sufficient condition for the trapping of actual
particle orbits.

Using the model presented in Section 3, we trace the drift
orbits of particles, i.e., the motion of the guiding center subject
only to the large-scale magnetic field, with results as shown
in Figure 5. We use standard approximations that the guiding
center moves along the field subject to conservation of the first
adiabatic invariant, and perpendicular to the field subject to
gradient and curvature drifts. Then, the guiding center location
r evolves according to

dr

dt
= μvb̂ + vg + vc, (18)
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where the drift velocities vg and vc are calculated from
Equations (1) and (2). Note that the velocity of the particle
parallel to the field is v times the pitch-angle cosine μ, so the
sign of μ determines the direction of motion along the field line.
Then, μ at each location is determined by conservation of the
first adiabatic invariant, i.e., the magnetic moment M

M = (1 − μ2)p2

2mqB
, (19)

where p is the particle momentum. (Note that for our assumption
of a static magnetic field, v and p are constants of the motion
because the magnetic force is perpendicular to v and does no
work on the particle.) Figure 6(a) shows how μ varies with
Z = R(π − φ), the distance from the Sun along the flux rope,
for some sample trajectories. Equation (19) can be rewritten to
obtain

μ = ±
√

1 − B(r)

BT

, (20)

where BT = p2/(2mqM) is the magnetic field strength at the
turning point (also called a “mirror point”) where μ goes through
zero and changes sign, and the particle is reflected.

This well-known process of systematic pitch-angle changes
along with changes in magnetic field strength is known as
adiabatic focusing or magnetic mirroring. In the absence
of drifts, the particle guiding center motion according to
Equation (18) would simply bounce from one mirror point to
the other at opposing sides of the loop (Figure 6(a)).

Our purpose in solving Equation (18) numerically is to
determine how the gradient and curvature drifts affect such
guiding center orbits, including whether or for how long they
remain trapped within the loop, given the assumption of a fixed
loop. We use a fourth-order Runge–Kutta method over most of
the orbit. We use a special treatment very close to a turning
point. Here, we assume a linear variation in B with distance
along the field line, use an analytic formula to estimate the time
duration for μ to reverse, and displace the orbit by the drift
velocity times that time duration.

To examine the drift orbits of a beam of SEPs, we trace
particles from starting locations at Z = 0.1 AU. We set B0 =
15 nT for a magnetic field directed counterclockwise along
the loop axis in Figure 2. Then, we choose an initial value of
μ = −0.99 (with a negative sign for motion away from the Sun
with decreasing φ and increasing Z) in light of the beam-like
distribution of SEPs near the Sun. Due to the rapidly changing
magnetic field near the Sun, adiabatic focusing is strong and
we can assume that SEPs are concentrated at |μ| ≈ 1, even in
the presence of pitch-angle scattering (Ruffolo & Khumlumlert
1995).

Figure 5 shows contour plots of the trapping time in hours for
drift orbits as a function of the initial position within the circular
cross section of the loop. This initial position is specified by the
coordinates a cos θ and a sin θ , where a specifies the flux surface
in terms of its radius r at the loop apex. The shading indicates
the duration over which the drift orbit from that initial position
remained within the flux rope. Figure 5 shows contours up to
25 hr. We also traced drift orbits for 50 hr, but the 50 hr contours
are almost identical to the 25 hr contours and are not shown
for clarity of presentation. In other words, the orbits trapped for
25 hr were almost always trapped for 50 hr as well. Note that
these results are for protons of 1 GeV; additional simulations
verify that for lower particle speeds, there are slower drifts and
longer trapping times.

Figure 5 shows results for varying winding number w, which
is the total number of complete circuits in θ over the entire flux
rope for field lines near the loop axis. We find that the results
in Figure 5 are merely rotated or reflected when reversing B0
and/or w.

When there is no winding of the field lines (w = 0), the
particles readily escape due to the overall curvature drift out of
the plane of the loop, toward increasing a sin θ . Thus, the initial
locations with the longest trapping times of over 5 hr are near the
minimum values of a sin θ . However, for w � 1.5 the tokamak
effect is clearly in evidence, as the drift orbits that start near the
center of the loop are trapped for the duration of the simulation
(50 hr). This corresponds to winding of the field lines by as few
as 1.5 circuits in θ over the entire flux rope. It is noteworthy that
the tokamak effect can trap a fraction of the drift orbits, even
though we consider the winding to be reduced near the Sun.
Roughly speaking, for greater winding w, a larger fraction of
the drift orbits is trapped.

Interestingly, the trapping behavior does not vary monotoni-
cally as a function of w. There is a resonance effect: when w is
close to an integral multiple of 3.75, some drift orbits from deep
inside the loop can escape quickly, and some orbits near the
outer edge of the loop remain trapped. Figure 5 shows this for
w = 3.75 and 7.5. Based on this, we expected and found similar
behavior at w = 11.25 and 15. For values of w away from the
resonance, the trapping behavior is more mundane: orbits that
start near the center of the loop are trapped and almost all orbits
that start near the outer edge escape quickly.

To understand this behavior, we note that the effect of guiding
center drifts on the escape or trapping of drift orbits is related to
the r-drift (outward or inward) integrated over the helical field
line trajectory as the drift orbit bounces from one leg of the loop
to the other and back. For non-resonant values of w, we find
that the tokamak effect applies as the outward and inward drifts
effectively cancel. For the resonant values of w, the drifts over
different parts of the orbit are imbalanced and the net drift is
predominantly outward for some starting values of a and θ and
predominantly inward for others.

To consider the implications of these results for SEP transport,
we note that the key result of Figure 5 is that most drift orbits are
in one of two categories: (1) rapidly escaping from the loop, over
� 5 hr; or (2) trapped for long times, � 25 hr. Only a very small
fraction of the orbits have trapping durations between 5 and 25
hr. For SEPs with drift orbits in Category 1 (for |w| � 1.5, or the
outer portion of a loop with higher |w|), we expect that drifts
will serve as the dominant mechanism for particles to escape
from the loop. For SEPs with drift orbits in Category 2 (found
in the inner portion of a loop with |w| � 1.5), the drifts alone do
not allow particles to escape from the loop over 25 hr or longer.
Over such a long timescale, other effects such as perpendicular
diffusion can no longer be neglected and indeed are likely to
cause the particles to escape from the inner portion of the loop.

Without field line winding (w = 0), we see that the drift
processes will rapidly and systematically remove SEPs from
the flux rope. With substantial field line winding (|w| � 1.5),
as frequently inferred for actual interplanetary magnetic flux
ropes, the drifts should rapidly and systematically remove SEPs
from the outer portion of the flux rope but not from the inner
portion. This is consistent with observations that trapping of
SEPs can occur for extended time periods. Then, SEPs in
the inner portion of the flux rope can undergo perpendicular
diffusion to the outer portion, where the drifts subsequently
contribute to a faster escape. Thus, we expect that the extended
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escape times associated with GLE observations are determined
by the diffusion out of the inner portion of the flux rope.

Conversely, when there is a higher density of SEPs or GCRs
outside the loop, they can readily enter the outer portion of the
flux rope by means of drifts. They can then access the inner
portion more slowly by means of perpendicular diffusion.

We would expect our general conclusions regarding the
categories of drift orbits to be only weakly model dependent, as
we have found the tokamak effect to be quite robust, despite
our model’s reduced winding near the Sun. What are more
model dependent are the specific values of w where resonant
behavior is found. We take our results to provide an indication
that for actual interplanetary magnetic flux ropes, such resonant
behavior could take place, implying an irregular boundary
between the aforementioned “inner portion” of the flux rope
with trapped drift orbits and an “outer portion” where drifts
lead to more rapid escape of particles.

Our general conclusions should also be robust with respect
to effects of flux rope expansion and pitch-angle scattering.
Regarding flux rope expansion, it is important to consider
the effect of adiabatic deceleration, which is a systematic
decrease in the particle momentum in an expanding plasma,
due to the expansion of the distance between mirror points
and/or the distance between the magnetic fluctuations that
serve as scattering centers. To approximately estimate the
effect of adiabatic deceleration on individual particles, let us
assume an isotropic particle distribution. Then, we can use
the following formula, which applies for non-relativistic or
relativistic particles (Parker 1965; Dorman 1965):

〈ṗ〉
p

= −1

3
∇ · vp = −1

3

V̇

V
, (21)

where p is the particle momentum in the plasma frame, vp

is the plasma velocity, and V is the volume of the flux rope.
The above formula can be derived kinetically (Ruffolo 1995)
or from a thermodynamic argument in which the interaction
of the particles with “scattering centers,” such as magnetic
irregularities, that move with the plasma allows the particles
to be treated as an adiabatic, ideal gas with a volume V defined
by the plasma expansion. Thus, we have p ∝ V −1/3.

The effects of adiabatic deceleration can be considered in
two ways: how it affects individual particles and the density of
particles at a fixed energy. For the former, note that the drift
speed vd for either the gradient drift or the curvature drift has
the following dependence:

vd ∼ pv

qB�
, (22)

where � is a characteristic length scale, either the inverse
fractional gradient or the radius of curvature. For a homologous
expansion, B is inversely proportional to the cross-sectional
area, so that B ∝ �−2 (Marubashi & Lepping 2007), and
Equation (21) implies that p ∝ �−1. Thus, during the course of
adiabatic deceleration, we have vd ∝ v for either non-relativistic
or relativistic particles.

Therefore, as adiabatic deceleration reduces the particle
speed, the drift speed is also reduced, and the timescale of
escape could be longer. Marubashi (2002) has estimated the rate
of expansion of three flux ropes observed near the Earth, which
were found to double in size � over times ranging from 56 to
144 hr. For such long expansion times, our general conclusions
concerning the escape of drift orbits from a flux rope are not
noticeably affected.

On the other hand, adiabatic deceleration can also affect
the density of a particle population in a specific energy range,
which directly relates to observations. Because SEP populations
typically have steep energy spectra, adiabatic deceleration
reduces the SEP density over a timescale that is much shorter
than the expansion timescale. Note that this reduction occurs
even if the particle orbits are completely confined within the
flux rope. For the specific case of the GLE of 1989 October 22,
Ruffolo et al. (2006) estimated that adiabatic deceleration should
account for a density decline with an exponential timescale of
19 hr. However, for that event the relativistic solar particle
density inside the interplanetary flux rope (due to a preceding
CME) was found to decrease faster than that, with an exponential
timescale of 3 hr, which was therefore attributed to the escape of
SEPs from the flux rope. In sum, when drift orbits are trapped for
extended times (� 25 hr), one must bear in mind that adiabatic
deceleration will lead to a decrease in the observed particle
density in a given energy range, and perpendicular diffusion
can also lead to a faster escape of particles from the region of
extended drift orbits.

The drift orbits can be viewed as “unperturbed” trajectories
that are perturbed by the stochastic effects of magnetic fluctua-
tions, including pitch-angle scattering and perpendicular diffu-
sion. The role of perpendicular diffusion is to transport particles
to other parts of the flux rope, and for the portion that is cross-
field diffusion, to enter or exit the flux rope. To visualize the
role of pitch-angle scattering, we need to first consider the “un-
perturbed” trajectories in Figure 6(a). This figure shows sample
drift orbit trajectories in terms of Z, a coordinate along the flux
rope axis, and μ, the pitch-angle cosine, which in turn deter-
mines the rate of streaming, Ż = −μv. (The minus sign arises
from the choice of B0 > 0 and the direction along which Z
increases.) Here, μ is seen to vary with position along the flux
rope axis in a manner that conserves the first adiabatic invariant
M, with reflection (a change in sign of μ) at mirror points on
either leg of the loop. The results shown in Figure 5 are for par-
ticles starting near the Sun, i.e., traveling along the outermost
paths in Figure 6(a). If pitch-angle scattering, say, near the apex
moves particles to the inner paths in Figure 6(a), how will that
affect the escape times shown in Figure 5?

To answer this, we examined simulation results for drift orbits
starting at the apex instead of the Sun, with different values
of μ. We found that particles with larger |μ| escaped more
rapidly. Because particles injected near the Sun as in Figure 5
would have |μ| close to 1 at the loop apex, their perturbation
by pitch-angle scattering would increase the escape time. Thus,
this perturbation could increase the portion of SEP orbits that is
trapped for long times, in comparison with the results for drift
orbits as shown in Figure 5.

Finally, one additional caveat about the escape of SEPs from
the interior of a flux rope is that there have been reports of
open field line regions embedded inside magnetic clouds in
association with an inflow of GCRs (e.g., Bothmer et al. 1997;
Cane et al. 2001). Such embedded regions of open field lines
can “short circuit” the trapping of drift orbits, and the presence
or absence of such an escape path inside the magnetic cloud will
also contribute to strong event-to-event variability.

5. DRIFT ORBITS OF GALACTIC COSMIC RAYS

In this section, we consider the inflow or outflow of energetic
particles across the boundary of an interplanetary magnetic flux
rope due to gradient and curvature drifts. This is relevant to
understanding the second stage of Forbush decreases in GCRs.
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Figure 6. (a) Particle trajectories in terms of μ, the pitch-angle cosine, and Z,
the distance from the Sun along the loop, for varying initial values μ0 at the
apex (at Z = 1.57 AU). (b) Inflow rate and (c) outflow rate averaged over the
surface of the flux rope (i.e., averaged over θ ) as a function of μ and Z; see the
text for details. During a Forbush decrease, this implies that Galactic cosmic
rays preferentially enter along one leg of the loop and exit along the other, which
will contribute to a unidirectional anisotropy and net flow of cosmic rays. The
flow direction is determined by the poloidal field direction.

Let us consider the drift velocity outward across the flux rope
surface, vn = (vg + vc) · n̂, where n̂ is the outward normal to
the surface. We find it useful to separately consider regions with
inflow and regions with outflow due to drifts.

It is not particularly important to study the position θ along the
surface where the particles exit or enter the loop, especially given
the helical trajectories of field lines and the large θ -components
of guiding center drifts, from which we expect any density non-
uniformities to spread rather rapidly in θ . Thus, we integrate
over rmaxdθ at the flux rope boundary to determine the overall
inflow and outflow at a given distance Z = R(π − φ) from the
Sun along the loop axis (recall that we use R = 0.5 AU). We

define the outflow rate as

O(Z) ≡ rmax

∫ 2π

0
vnH (vn) dθ

= amax cos(φ/2)
∫ 2π

0
vnH (vn) dθ, (23)

where H is the Heaviside step function, valued at 1 when its
argument is positive and 0 otherwise. The step function H serves
to select only values of θ where the outward drift velocity is
positive. We evaluate O(Z) in units of AU km s−1 to aid in
its interpretation as a drift velocity (in km s−1) integrated over
the circumference of the flux rope (in AU). This outflow rate
O(Z) is weighted for the surface area (i.e., loop circumference)
at each distance Z, which is proportional to cos(φ/2). When
multiplying O(Z) by a (constant) particle density, one obtains
the particles exiting the flux rope per time per distance Z along
the loop. Similarly, we define the inflow rate as

I (Z) ≡ rmax

∫ 2π

0
|vn|H (−vn) dθ

= amax cos(φ/2)
∫ 2π

0
|vn|H (−vn) dθ, (24)

where the step function now selects only values of θ where the
drift velocity at the flux surface is inward.

Figures 6(b) and (c) show the inflow and outflow rates,
respectively, as a function of μ and Z. The inflow and outflow
rates are related by the reflection symmetry around the loop
apex in our model. The inflow is predominantly along one leg
(at low Z) and the outflow is predominantly along the other
(at high Z). We can understand this behavior in terms of the
qualitative drift properties discussed in Section 2. At the loop
apex, the drift due to the large-scale curvature is out of the loop
plane, with a balanced inflow and outflow. In contrast, along
the legs of the loop, the approximately conical flux rope has
drifts with a systematic inflow along one leg and outflow along
the other. There is relatively little inflow or outflow close to the
Sun (Z ≈ 0 or 2πR) because of the stronger magnetic field and
lower drift velocity, as well as the lower surface area of the loop.

Let us now consider the implications for the second stage
of Forbush decreases, in which there is a relative paucity
of GCR inside the loop (e.g., because the loop overexpands
in comparison with the solar wind) for an observed density
decrease of up to ∼ 25% (Cane et al. 1996). There is also
a net inflow of particles from the denser population outside,
without which the second-stage Forbush decrease would have
a much larger magnitude. When interpreting our results for the
inflow and outflow rates, we must consider whether the particle
density can realistically be considered to be nearly constant as
a function of Z. In interplanetary space, a fast CME drives a
shock, which extends farther in longitude than the flux rope
(Cane 2000). The so-called sheath region between the shock
and the flux rope is not normal solar wind, and indeed has a
substantially different geometry near the two legs of the flux
rope. Nevertheless, in a multispacecraft study by Cane et al.
(1994), there was a remarkable example (due to a solar event
on 1978 March 6) where three spacecraft observed a Forbush
decrease at the apex and at either side, and it was found that
the GCR density just before the second stage (i.e., just before
the spacecraft entered the loop) was quite similar at all three
locations. This is evidence that the GCR density in the sheath
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region can be considered approximately constant as a function
of Z.

As discussed in Section 1, we expect drifts to play a significant
role in the transport of energetic particles across the boundary
of the flux rope. Our result implies that drifts should contribute
to a flow of GCRs in one direction along the loop, as more
particles enter the loop along one leg and exit along the other,
as indicated in Figure 1. (The flow follows the Z–μ trajectories
shown in Figure 6(a); note that the choice of B0 > 0 as used
Figure 6 implies that particles with positive μ move toward
lower Z.) This flow should be observable as a net unidirectional
anisotropy during the second stage of a Forbush decrease. When
changing the sign of B0 (changing the magnetic field direction)
or w (reversing the handedness or helicity), Figures 6(b) and (c)
are switched, i.e., the GCR flow direction is reversed. Thus, we
find that the flow direction depends on the sign of the poloidal
field Bθ , following the direction of ∇ × (Bθ θ̂). In other words,
there is a “right-hand rule” between Bθ and the flow direction:
if the fingers of your right hand follow Bθ around the loop, your
right thumb points along the flow direction.

Note that we would expect a similar flow of SEPs in the case
where there is a higher density of SEPs outside the flux rope
(see, e.g., Lario et al. 2004). Here, similar physical processes
apply, with a decrease in the SEP density inside the flux rope
due to adiabatic deceleration that can be filled in by an inflow
from outside.

As a reality check for the second-stage Forbush decrease, we
consider the time over which the inflow rate I (Z) can fill the
flux rope with GCRs. For the interplanetary flux rope on 1989
October 22, Ruffolo et al. (2006) inferred a density decay time
of 19 hr due to adiabatic deceleration associated with the loop
expansion. If guiding center drifts are indeed largely responsible
for the transport of particles into the flux rope, they should fill
the rope over a timescale of several hours. A much shorter
timescale would allow the GCR density to reach ambient levels,
in contradiction with the second-stage Forbush decrease, and
a much longer timescale would imply that drifts do not play a
significant role in the flow of GCRs into the flux rope.

Based on I (Z) (see Figure 6(b)) averaged over μ and
integrated over Z, and considering the total volume of the flux
rope, V = π2a2

maxR = 0.05 AU3, we obtain a filling time of
2.3 hr. Actually, this is a lower limit on the time to fill the
flux rope, because according to our computer simulations, drift
orbits that enter the flux rope remain near the outer boundary,
and a large fraction of them exit again after only a few minutes.
Thus, while I (Z) is relevant to the unidirectional anisotropy of
GCRs as discussed above, it does not properly represent the
inflow of GCRs to the interior of the flux rope. To properly
estimate the fraction of GCRs that enter and remain inside the
flux rope would require accounting for the stochastic processes
of pitch-angle scattering and perpendicular diffusion, which is
beyond the scope of the present work. In any case, we see that
the filling time due to drifts should be substantially greater than
2.3 hr, which is consistent with the order of magnitude required
to account for second-stage Forbush decreases.

6. CONCLUSIONS

1. In order to study the drift orbits of energetic particles in
an interplanetary magnetic flux rope, we have found it useful
to develop a global, analytic flux rope model satisfying the
following requirements.

a) The magnetic field is divergence free.
b) The field lines are less twisted close to the Sun.

c) The field lines are nearly radial close to the Sun.
d) The flux rope cross section is circular for simplicity.
e) The magnetic field components as a function of distance

from the flux rope axis are realistic.
2. We have determined the guiding center drift velocity

throughout the flux rope. It is predominantly along flux surfaces,
with a small component outward or inward.

3. For a flux rope with no winding of the magnetic field lines,
energetic particles (e.g., SEPs) can rapidly escape from the entire
flux rope. With winding of at least 1.5 complete circuits over
the flux rope, there is an inner portion of the flux rope where
drift orbits are trapped, and an outer portion where they rapidly
escape.

4. SEPs can escape from the inner portion of a flux rope with
|w| � 1.5 by means of perpendicular diffusion or embedded
open field structures, and drifts can rapidly remove them from
the outer portion of the flux rope. Conversely, when there is
a higher density of SEPs or GCRs outside the loop, they can
readily enter the outer portion of the flux rope by means of drifts,
and enter the inner portion by means of diffusion or embedded
open field structures.

5. We have found a resonance effect for values of the winding
number w close to integral multiples of a certain value, where
there is a complex boundary between the inner portion of the flux
rope with trapped drift orbits and the outer portion with escaping
drift orbits, and some orbits from deep inside can rapidly escape.

6. The drifts across the boundary of the flux rope are pre-
dominantly inward along one leg of the loop and predominantly
outward along the other.

7. For a second-stage Forbush decrease in GCRs, we expect
the guiding center drifts to contribute to a net unidirectional
flow (anisotropy) of GCRs in a direction determined by the sign
of the poloidal field Bθ . This also applies to situations with a
higher density of SEPs outside the loop.
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