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ABSTRACT

Many processes in astrophysical plasmas are directly related to magnetic connection in the presence of turbulent
fluctuations. Even statistically homogeneous turbulence can contain closed topological structures that inhibit
otherwise random transport of field line trajectories, thus temporarily trapping certain trajectories. When a coherent
random field perturbation is added, the trapped field lines can escape diffusively but at a suppressed rate that is
much lower than what would be estimated based on the perturbation field alone. Here we demonstrate both
trapping and escape, and show, using a novel quasi-linear theory, how to compute the suppressed diffusion that
affects the escape from the trapping structure. The effect is relevant to understanding filamentary magnetic
connection in interplanetary space and the observed dropouts in moderately energetic particles from impulsive
solar flares. Expressed here in terms of a magnetic field line random walk, this phenomenon also has analogies
in a broad range of dynamical systems that evolve as an incompressible flow in phase space with a coherent
perturbation.

Subject headings. diffusion — magnetic fields — turbulence

1. INTRODUCTION 2. PHENOMENOLOGY

. R _ The magnetic field line is defined to be tangent everywhere
The behavior of an ensemble of magnetic field lines subject to the magnetic fiel® . Ifll is an arc length, the lines of force

to transverse fluctuations is in direct analogy to phase-spaceare defined by the differential equation

trajectories of dynamical systems that obey Liouville’s theo-

rem. Therefore, the transport of magnetic field lines having a d xB = 0. (1)
random perturbation is a model for certain volume-preserving

mappings in nonlinear dynamics. Furthermore, transport of The possibly stochastic character of an ensemble of solutions
field lines, closely related to transport of charged particles (Jok- (field lines) obtained from this equation depends crucially on
ipii 1966), is of fundamental importance in space and astro- the spatial complexity of the magnetic field throughout the
physics and has a great impact on heat conduction (Chandramegion of interest. In this Letter, we use a simple model to study
& Cowley 1998), cosmic-ray transport (Jokipii & Parker 1968), the topological inhibition of the random walk of magnetic field
and magnetic field complexity (Matthaeus et al. 1995). Re- lines. The total magnetic field can be writtenB, y, z) =
cently, we showed how puzzling observations of persistent BoZ+ b(X, y, 2), whereB,z is the mean field anol is the
sharp gradients of observed solar energetic particle (SEP) in-fluctuation perpendicular to the mean field. The fluctuation is
tensities m|ght be exp|ained by t0p0|ogica| trapping of field the SU_m Of a two-dimensional field and slab turbulence, which
lines by closed quasi-two-dimensional magnetic islands thatWe write in the form

inhibit field line transport, and therefore particle transport (Ruf-

folo et al. 2003; see also Giacalone et al. 2000; Zimbardo et b(x, y, 2) = b*(x, y) + b*(2). 2

al. 2004), despite the presence of a random field perturbation R

in the solar wind (“slab” turbulence) that is coherent over the In general, we can writh*(x, y) = V x a(x, y)z , where
two-dimensional islands. Here we examine the phenomenon ofa(X. Y) is called the potential function. For the pure two-
field line trapping and escape, and show, using a novel quasi_dlmensmnal case, the field lines must follow level surfaces

linear theory, that escape occurs not at the expected rate bufcontours) ofa(x, y) . Fluctuations in the solar wind are found

at a suppressed diffusive rate. The suppression is due to ini0 P& well described by such a superposition of slab and two-

terference between the trapping two-dimensional field and thedimensional fluctuations (Matthaeus et al. 1990; Bieber et al.
: : . : 1994, 1996). Substituting timtefor distancez, this model also
escape-producing slab field. The net diffusion rate is low until ; . : ' X .
! . . ._applies to physical or industrial processes with a systematic
the field line leaves the trapping zone and the normal rate is

recovered. The result is an extended filament of magnetic con two-dimensional flow (the velocity field is analogousti® )
" th't' I stant 1o the slab pert gb i’ and random, time-dependent shaking by an external force (the
nection that 1S unusually resistant to the slab periurbations. slab fluctuation).

For a model of a single island of topological trapping in a
two-dimensional field, here we safx, y) as a Gaussian func-
tion:
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Fic. 1.—(@) Orbit in thex-y plane of a selected field line that lies deep in
the trapping island, showing the predominantly cyclic trajectory, which grad-
ually is transported out of the trapping region, where the motion becomes
highly irregular, and is an almost unconstrained random walkP(ot of the
radial coordinate = (x*+ y?)*? of the field line ira) vs. the parallel coor-
dinate. At short distances, the radial position remains near its initial value
r, = 15; the trapping island is of widtle = 30 . After arourml= 150 , the
field line breaks out of the trapping structure and random walks with a much
larger amplitude.

field, the field line trajectory is a helical orbit along a cylinder
of constanta(x, y) with a constant angular “velocity” (in terms
of the distance) K = a(r,)/B,0? = [b?°(r,)/BJ/r, Wherer,
is the starting radius. On the other hand, for pure slab turbu-
lence, the field lines undergo a random walk with correlation
lengthl, .

We numerically explore how field lines behave under the com-

bined influence of these two effects: Gaussian two-dimensional

plus slab turbulent fields. We simulate the field lines starting at
different radii of the Gaussian functi@fx, y) = and examine the

possible diffusive behavior of their transverse displacements. In
order to obtain the field line trajectories, we solve the field line

equations from equation (1):

d_X B h<2D + t&slab

d_X _ by2D+ qslab
dz B, B '

4
dz B, )
The magnetic fields are synthesized as follows. For the two-
dimensional field, we directly calculate the magnetic field in
real space from the two-dimensional potential function. For the
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Fic. 2.—Displacement squared in radial component ensembles of field
lines. Smaller initialr corresponds to greater depth in the two-dimensional
structure § = 10 ) and therefore more potent trapping. All field lines eventually
are transported diffusively with the full slab diffusive rate, but field lines
starting more deeply in the trapping island experience an effective delay in
attaining this rate.

order Runge-Kutta method with adaptive time stepping regu-
lated by a fifth-order error estimate (Press et al. 1992).

Figure I shows a typical trajectory of a field line in this
model field, projected in the-y plane ¢ = 30,r, = 15). The
field line is temporarily trapped in nearly circular orbits within
the two-dimensional island. When it eventually leaves the two-
dimensional island, the trajectory becomes irregular due to
the slab turbulence. Figurebls a plot of radiusr = (x* +
y?)¥? versus distance of the field line shown in Figuredl
The field line experiences small random changes in radius as
it is dominantly influenced by the two-dimensional field. It
becomes a large-scale random walk when the two-dimensional
field is not dominant.

Since typical solutions like Figure 1 are irregular, we ex-
amine the statistics of many field lines. We trace 2500 field
lines and measure the average squared radial displacement in
the x-y plane,(Ar?) , versus distanzeNote that the field lines
are traced for only 10% of the length of the simulation box in
the z-direction (to avoid periodicity effects inherent in our field
generation method). In this way, our results differ fundamen-
tally from the periodic-stochastic transition that occurs in pe-
riodic toroidal domains, a topic well studied in laboratory fu-
sion and in nonlinear dynamics (Rosenbluth et al. 1966). The
present results are a model for trapping and escape in an un-
bounded or homogeneous plasma, appropriate to space and
astrophysical systems, or in the time domain, to physical or
industrial processes of long duration.

slab turbulence, the field is generated in wavenumber space by The fields are generated in box sizes 100000 x

specifying the shape of the magnetic spectrum and choosing; 0o, 000in units of the parallel coherence scale. The grid sizes
random phases of the Fourier amplitudes. We choose the Kol-3r¢ N, = 4000, N, = 4000, andN, = 4,194,304. We set

mogorov spectrum,

_Cc
[1+ (k1)1

whereC is a normalization constant ahd is a coherence length
related td, . The spectrum is flat whkn< 11,  and rolls over
at ko, = 1/,. Fork,> k,,, the spectral shape is proportional
to k°3. We use an inverse fast Fourier transform to convert
the slab field into real space. Equation (4) is solved by a fourth-

Pu(ke) = By(k) = ()

o =101, = 1.0, (b"*¥B,) 2= 12.5 and (b ?7B,) 2= 12.5,
where 6b®* andéb?® denote the rms of the slab and two-
dimensional fields, respectively, averaged over the entire box.
With these parameters, the two-dimensional field is very strong
near the center of the two-dimensional island, as the size of
the Gaussian width is very small compared toxtyesimulation
region. Each field line starts at=r, and a random azimuthal
angle.

Figure 2 illustrategAr?)  versusfor various initial radii in
the two-dimensionat slab case and in the pure slab case. When
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Fic. 3.—lllustration of the definitions of, antye . it sl A A {ro=18
0.1 | 7o=10 .
field lines start inside the two-dimensional island, the slopes Bz Jro=10
of the mean square radial displacements change systematically I e SEECEEGIEE S 7oz
and are initially much less than the slab rate. There is a delay ) ' : '
in attaining faster diffusion rates, implying that field lines are L 10 Alzoo 1000 10000

trapped temporarily due to the strong two-dimensional field.
Only at much greater distances do the field lines eventually Fic. 4—Suppressed and full slab diffusion rates from numerical simulations
attain strong diffusive transport at almost the full slab rate. If (Slid lines) and the theory of suppressed diffusion for smalhorizontal

we trace the slope at long distance back toxaads, then we %71 ", Tre heory Scurate desces the suppressed difusn of o
can define an effective trapping length,{, ), and we find that , - 1.

this scales systematically with various parameters.

When the field lines start more deeply inside the two- direction, which changes during the circular motion. In terms
dimensional island, ., becomes longer. Furthermore, we canof the slab correlation function (Jokipii 1973,,(Az') , with
estimate the boundary of trapping ( ) and the maximum of the Aoz = 7/ — 7,
trapping length for each cadelf;, ) fromthe plotof, versus
starting radius, , as shown in Figure 3. When varying param- 1 (¥ (7
eters such as the strength of two-dimensional and slab fluc- (ar?) = §J J R«(AZ') cos KAZ)dAZ' dZ,  (8)
tuation, correlation length, and the width of the Gaussian, an oJo Jo=

empirical result is . . . . L
P where the integration over allz’  is a valid approximation when

sb20\7057 ( B, 074 os3 Az>|.. In terms of the power spectruRy, , we have
LTr?i)[(J o [( Bo )1 [(6bslab)I 0_1.5' (6)
b, < (0% _ TR RO o
On the other hand, the trapping boundary depends only on " o2az Y2 B T*"R(0)’

the length scales of two-dimensional and slab fields and is
independent of the strength of the fluctuations. We have carriedwhereD,,,, is the standard (Jokipii 1966) quasi-linear slab re-
out a numerical experiment in which field lines are started sult. The theoretical result in equation (9) tells us that the radial
uniformly in a circle that has a size larger thanFor a very motion of the field lines deeply inside the two-dimensional
strong two-dimensional field, a sharp trapping boundary ap- island is diffusive and is associated with the slab power spec-
pears. The field lines inside the trapping boundary are trappedirum at the wavenumber resonant with the two-dimensional
while the field lines outside this boundary quickly diffuse away. angular velocity at the original radius.
To confirm the theory, we comput@r?)/(2Aaz)  from the

3. THEORY OF SUPPRESSED DIFFUSION simulations as shown in Figure 2 and compare this with the
suppressed diffusion theory. Note that this theory is only ex-
pected to hold at lonAz , when field lines are still neas
r,. The comparison is presented in Figure 4. The field lines

The simulations show that when two-dimensional and slab
fields are superimposed, the field lines do not follow the con-

tours Ofa()-(, y) bUt are also not fU”y diffusive with the Slab. Starting well inside the Gaussian (Of widsh= 10 ), such as
rate. The field lines are trapped near the center of the Gaussian _ 5549 7 give good agreement with the theory while the

. . . . . 0
and rapl)fldly diffuse dW'thhthe slab ratr(]a onlyhat a rag!al dls'ganc? discrepancy between theory and simulations increases when
r> o. It we consider the region where the two-dimensional \q siart the field lines away from the center of the Gaussian.

field is much stronger than the slab component, we can treaty long distances, the field lines starting at different spread

the slab fluctuation as a perturbation and apply a quasi-lineary; e ‘same rate, which is almost the rate of the pure slab case.
approach. Specifically, we assume the orbit is unchanged byrhe giffusion rate for all cases at large distancea®, ., since
the slab field at leading order and therefore its transverse po'(ArZ) = (Ax?) + (Ay?) responds to the rapid field line random

sition (x, ) traces a circle advancing at angular velosityith walk in each Cartesian coordinate (in thg plane), not only
increasing, that is,x = 1,C0s Kz + ¢) .y = 1,SIN (KZ+ @) .y the radial direction as when~r, . The diffusion rate in the
At the next order, the mean squared fluctuation in radius is 1\ 5_dimensionat-slab case is slightly lower than in the pure
1 [ [ slab case at long distances because there is a small probability
(Aar?) = = (b(2)b(2))dz dz', @) that escaped field lines reenter the two-dimensional island and
BsJo Jo are again trapped. In addition, the synthetic slab field lines are
periodic inz, so there is a slightly higher probability that the
where b (2) is the projection of the slab field in the radial field lines return to the trapping center. However, we expect
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that if there were no periodicity in and the simulation could 4. CONCLUSIONS
be continued to much larger the radial diffusion coefficient
would converge precisely to the slab rate. In conclusion, we have found that a strong two-dimensional

Our study shows that the two-dimensional field can tem- field can inhibit the random walk of field lines due to a slab field
porarily trap field lines and suppress the field line random walk component. The simulations show that when we start the field
at short to intermediate distances. For large distances, all fieldjines inside the two-dimensional island, the diffusion of field lines
lines escape the two-dimensional topology and diffuse asymp-gsystematically changes with a delay at the beginning due to the
totically at the sllab rate. For the field lines starting Qeeply inside strong two-dimensional field. The trapping boundary depends only
the two-dimensional island, the suppressed diffusion arises ben, the topological scale of the two-dimensional island and the
cause the rapid motion around the trapping island decorrelategorrelation scalé, of the slab turbulence. The field lines located
the radial component of the perturbation. We can use quasi-near the maximum of the two-dimensional potential function dif-
linear theory to calculate the suppressed transport rate, whichfyse outward at a lower rate than when they are outside the two-
parametrically depends on the initial radius, a measure of thedimensional island. We theoretically explain the suppression of
degree of trapping. This mechanism helps us to understandne field line diffusion inside the two-dimensional island by a
complicated systems such as the two-dimensioskb tur- quasi-linear theory, which is confirmed by simulations. Finally,
bulent magnetic field (Ruffolo et al. 2003), which is thought oyr study of the suppression of the random walk of field lines is
to be a reasonable model for the interplanetary magnetic field. applicable to any system that consists of a systematic flow in two

In this model, the two-dimensional field is turbulent and there gimensions on which is superimposed a spatially coherent random
are many islands of irregular shape. When the field lines startyygk.

within a certain region that is relevant to the injection region

of SEPs, the field lines starting near local maxima or minima

of the two-dimensional islands can be trapped within the islands

while field lines starting between islands, or near the local We acknowledge support by grants from the Thailand Re-
saddle points, rapidly diffuse. Hence, the observed filamenta-search Fund, the Ratchadapisek Sompoj Fund of Chulalong-
tion of field lines (Mazur et al. 2000) occurs at intermediate korn University, US National Science Foundation grant ATM-
distances due to topological trapping, which is enhanced due0105254, and NASA grant NAG5-11603. G. R. thanks Mahidol
to suppressed escape. At long distances, the field lines diffuséJniversity for their kind hospitality and for travel support from
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